Skip to main content

Abstract

Our project aims at providing the materials engineering fraternity with a simple and effective interface using ipython to operate Quantum ESPRESSO (QE), an open source code for materials simulation. QE is a first principles code using density functional theory, plane waves and pseudo potentials; it has ability to predict material properties. Ipython notebook interface uses the scope of the following libraries; Atomic Simulation Environment (ASE), matplotlib, scipy, numpy, pyspglib, elastic and newly developed library: QE-nipy-advanced to predict the properties. QE-nipy-advanced is the latest version of QE-nipy. The latest version incorporates features that can take care of all the input parameters supported by PWscf and PHonon packages of Quantum ESPRESSO. Thermo-mechanical properties of some nuclear materials with different magnetic and metallic behavior has been studied using the QE-nipy-advanced, but in here we demonstrate the thermo-mechanical properties of non-magnetic insulator like silicon carbide and thoria, which are materials for future nuclear reactor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Giannozzi, S. Baroni et.al. “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of Materials,” Journal of Physics: Condensed Matter, 21 (2009), 395502–395521

    Google Scholar 

  2. G.A. Slack, “The Thermal conductivity of Nonmetallic crystals,” Solid State Physics, 34 (1979), 1–71

    Google Scholar 

  3. A. Griffith, “Accident Tolerant Fuels” (Report USNRC, DOE, 2013)

    Google Scholar 

  4. J.A. Khan, T.W. Knight, S.B Pakala, W. Jiang, R. Fang, and J. S. Tulenko, “Enhanced thermal Conductivity for LWR Fuel,” Journal Nuclear Technology, 169 (2010), 61–72

    Google Scholar 

  5. P.T. Jochym and K. Parlinski, Ab initio lattice dynamics and elastic constants of ZrC, European Physical Journal B, 15, 2 (2000) 265–268

    Article  Google Scholar 

  6. F. D. Murnaghan, “The Compressibility of Media under Extreme Pressures,” Proceedings of the National Academy of Sciences of the United States of America, 30 (1944), 244–247

    Article  Google Scholar 

  7. L.D. Landau, E.M. Lifszyc, Theory of elasticity, (Pergamon Press, 1970)

    Google Scholar 

  8. W. Voigt, “Lehrbuch der Kristallphysik,” 1928, 962

    Google Scholar 

  9. A. Reuss, “Berechnung der Flieflgrenze von Mischlqistallen auf Grund der Plastizitatsbeding fiir Einkristalle,” Z Angew Math Mech, 9 (1929), 49–58

    Article  Google Scholar 

  10. H. Y. Xiao, Y. Zhang, and W. J. Weber, “Thermodynamic Properties of CexTh1-xO2 Solid Solution from First- Principles Calculations,” Acta Materialia, 61 (2013), 467–476.

    Article  Google Scholar 

  11. Y. Lu, Y. Yang and P. Zhang, “Thermodynamic properties and structural stability of thorium dioxide,” Journal of Physics: Condensed Matter, 24 (2012), 225801–225811.

    Google Scholar 

  12. M.A. Blanco, E. Francisco, V. Luaña, “GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model” Computer Physics Communications, 158 (2004), 57–72

    Article  Google Scholar 

  13. P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, “First-principles calculation of the pressure coefficient of the indirect band gap and of the charge density of C and Si,” Physical Review B, 34 (1986), 1314–1316

    Article  Google Scholar 

  14. W. R. L. Lambrecht, B. Segall, M. Methfessel, and M. van Schilfgaarde, “Calculated elastic constants and deformation potentials of cubic SiC,” Physical Review B, 44 (1991), 3685–3694

    Article  Google Scholar 

  15. J. Staun Olsen, L. Gerward, V. Kanchana and G. Vaitheeswaran, “Erratum to “The bulk modulus of ThO2—an experimental and theoretical study”, Journal of Alloys and Compounds, 381 (2004) 37–40

    Article  Google Scholar 

  16. K.K. Phani, D. Sanyal, “Elastic properties of porous polycrystalline thoria—A relook,” Journal of European Ceramic Society, 29(3) (2009), 385–390

    Article  Google Scholar 

  17. P.M. Macedo, W. Capps, J.B. Watchman, “‘Elastic Constants of Single Crystal ThO2 at 25°C,” Journal of the American Ceramic Society, 47 (1964), 651–1.

    Article  Google Scholar 

  18. J. Serrano, J. Strempfer, M. Cardona, M. Schwoerer-Böhning, H. Requardt, M. Lorenzen, B. Stojetz, P. Pavaone and W.J. Choyke, “Determination of the phonon dispersion of zinc blende (3C) silicon carbide by inelastic x-ray scattering,” Applied Physics Letters, 80 (2002), 4360–4362.

    Article  Google Scholar 

  19. A. Sparavigna, “Lattice thermal conductivity in cubic silicon carbide,” Physical Review B, 66 (2002), 174301 (5).

    Article  Google Scholar 

  20. K. Karch, P. Pavone, W. Windl, O. Schütt, and D. Strauch, “Ab initio calculation of structural and lattice- dynamical properties of silicon carbide,” Physical Review B, 50(1994), 17054 (10)

    Article  Google Scholar 

  21. Taylor, A., Jones, R.M. in Silicon Carbide — A High Temperature Semiconductor, Eds. O’Connor, J.R., Smiltens, J., Pergamon Press, Oxford, London, New York, Paris 1960, 147

    Google Scholar 

  22. I. Barin, Thermochemical Date of Pure Substances (Newyork, 1995),

    Book  Google Scholar 

  23. R.E. Taylor, H. Groot, J. Ferrier, “Thermophysical Properties Research Laboratory” (Report TRPL 1336, 1993)

    Google Scholar 

  24. D. J. Senor, G. E. Youngblood, C. E. Moore, D. J. Trimble, G. A. Newsome and J. J. Woods, “Effects of neutron Irradiation on thermal conductivity of SiC-based composites and monolithic ceramics,” Fusion Technology 30(3), (1996), 943–955.

    Google Scholar 

  25. R.G. Munro “Materials Properties of a Sintered ∞-SiC,” American Institute of Physics and American Chemical Society (1997), 1195–1201.

    Google Scholar 

  26. J.K Fink, “Thermophysical properties of uranium dioxide,” Journal of Nuclear Materials, 279 (2000), 1–18

    Article  Google Scholar 

  27. B. Szpunar, J A Szpunar, “Theoretical investigation of structural and thermo-mechanical properties of thoria up to 3300 K temperature,” Solid State Sciences, 28 (2014), 36–40

    Google Scholar 

  28. K. Bakker, E. H. P. Cordfunke, R. J. M. Konings, and R. P. C. Schram, “Critical Evaluation of the thermal properties of Th02 and Th1-yUy02 and a survey of the literature Data on Th1-yPuy02,” Journal of Nuclear Materials, 250 (1997), 1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Malakkal, L., Szpunar, B., Zuniga, J.C., Siripurapu, R.K., Szpunar, J.A. (2015). An Interface to Quantum ESPRESSO. In: Poole, W., et al. Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME 2015). Springer, Cham. https://doi.org/10.1007/978-3-319-48170-8_19

Download citation

Publish with us

Policies and ethics