Skip to main content

On the anode effect in aluminum electrolysis

  • Chapter
Book cover Essential Readings in Light Metals

Abstract

Anode effects are detrimental in that they result in reduced energy efficiency and cause emissions of CF4 and C2F6. With prospects of future CO2 taxes, the emissions of these greenhouse gases may become costly. With a CO2 tax of 15 US$ per tonne, each anode effect minute per day per cell will increase the production cost by about 1.2%. Research work related to anode effects has been reviewed and analyzed. The wetting of the anode deteriorates as the alumina content decreases, leading to increased gas coverage of the base of the anode. With decreasing effective surface area, the actual current density increases. Anode effects then occur when the alumina content becomes too low and the local current density exceeds the critical current density. The paper concludes by analyzing various methods that may be used to decrease the frequency and duration of anode effects in prebake as well as Soderberg cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eyles, J., 6th Australasian Aluminium Smelter Techn. Conf. Workshop, Queenstown, New Zealand, 22–27 Nov. 1998.

    Google Scholar 

  2. Utigard, T.A., Light Metals 1999, 319–326.

    Google Scholar 

  3. Leber, B.P., Tabereaux, A.T., Marks, J., Lamb, B., Howard, T., Kantamaneni, R., Gibbs, M., Bakshi, V. and Dolin, E. J., Light Metals 1998, 227–285.

    Google Scholar 

  4. Marks, J., Light Metals 1998, 287–291.

    Google Scholar 

  5. Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K. and Thonstad, J., Aluminium Electrolysis, 2nd edition, Aluminium Verlag, 1982.

    Google Scholar 

  6. Oganisyan, G.L., Russ. J. Non-Ferrous Met. 36(1), 1995,36–41.

    Google Scholar 

  7. Piontelli, R., Mazza, B. and Pedeferri, P., Metallurgia Ital. 57(2), 1965, 51–69.

    Google Scholar 

  8. Qiu, Z.-X., Wei, C.-B. and Chang, M.-J., Light Metals 1982, 279–293.

    Google Scholar 

  9. Qiu, Z.-X., Wei, C.-B. and You, K., Aluminium 59, 1983, 753–756.

    Google Scholar 

  10. Qiu, Z., Wei, Q., Yu, Y. and Fan, L., Molten Salts, Proc. 9th Int. Symp., Electrochem. Soc. 1994, 594–600.

    Google Scholar 

  11. Calandra, A.J., Castellano, C.E. and Ferro, C.M., Electrochim. Acta 24, 1979,425–437.

    Article  Google Scholar 

  12. Calandra, A.J., Castellano, C.E., Ferro, C.M. and Cobo, O., Light Metals 1982, 345–358.

    Google Scholar 

  13. Calandra, A.J., Ferro, C.M and Castellano, C.E., Electrochim. Acta 25, 1980,201–209.

    Article  Google Scholar 

  14. Thonstad, J., Nordmo, F. Husay, A.H. Vee and Austrheim, O.G., Light Metals 1984, 825–839.

    Google Scholar 

  15. Thonstad, J., Nordmo, F. and Vee, K., Electrochim. Acta 18, 1973, 27–32.

    Article  Google Scholar 

  16. Nordmo, F. and Thonstad, J., Electrochim. Acta 29,1984,1257–1262.

    Article  Google Scholar 

  17. Popelar, P., Utigard, T.A. and Desclaux, P., Proc. Int. SympAdvanc. Prod. Fabr. Light Met. Metal Matrix Comp., CIM Conference, Edmonton, Aug. 23–27, 1992, pp. 39–53.

    Google Scholar 

  18. Zhu, H. and Sadoway, D.R., Light Metals 1999, 241–246.

    Google Scholar 

  19. Dorreen, M.D.L., Chin, D.L., Hyland, M.M. and Welch, B.J., Light Metals 1998, 311–316.

    Google Scholar 

  20. Noguchi, F., Ueda, Y., Yanagase, T. Eran, H.G. and Kammel, R., Erzmetall, 38, 1985, 189–195.

    Google Scholar 

  21. Qui, Z., Fan, L. and Grjotheim, K., Aluminium 62,1986,341–344.

    Google Scholar 

  22. Utigard, T.A., Costa, H., Popelar, P., Walker, D.I., Cool, G and Hoang, P., Light Metals 1994, 233–240.

    Google Scholar 

  23. Utigard, T.A., Toguri, J.M. and Ip, S.W., Light Metals 1988, 703–706.

    Google Scholar 

  24. Qiu, Z. and Zhang, M., Electrochim Acta 32, 1987, 607–613.

    Article  Google Scholar 

  25. Dewing, E. and Kouwe, E., J., Electrochem. Soc. 124, 1977, 58–64.

    Article  Google Scholar 

  26. Dewing, E., Canadian Met. Quart., 30, 1991, 153–161.

    Article  Google Scholar 

  27. Richards, N.E., Light Metals 1994, 393–402.

    Google Scholar 

  28. Vogt, H., J. Appl. Electrochem., 29, 1999, 137–145.

    Article  Google Scholar 

  29. Vogt, H., J. Appl. Electrochem., 29, 1999, 779–788.

    Article  Google Scholar 

  30. Vogt, H., Electrochem. Acta, 42, 1997, 2695–2705.

    Article  Google Scholar 

  31. Polyakov, P.V., Mozhaev, V.M., Burnakin, V.V, Kryukovskii, V.V., and Nikolaenko, V.E., Sov. J. Non-Ferrous Met. Res., 1,1979, 46–52.

    Google Scholar 

  32. Brunei, C. and Mergault, P., Rev. Inst. Hautes Temp. Refract, 20, 1983,17–24.

    Google Scholar 

  33. Nicolas, F., Groult, H., Devilliers, D. and Chemla, M., Electrochimica Acta 41, 1996, 911–918.

    Article  Google Scholar 

  34. Groult, H., Devilliers, D., Vogler, M., Hinnen, C. and Nicolas, F, Electrochimica Acta 38, 1993,2413–2421.

    Article  Google Scholar 

  35. Thonstad, J., Nordmo, F. and Rpdseth, J., Electrochim. Acta 19,1974, 761.

    Article  Google Scholar 

  36. Antipin, L.N. and Vazhenin, S.F., Elektrokhim. Rasplav. Solei, p. 314, Metallurgizdat, Moscow 1964.

    Google Scholar 

  37. Desclaux, P. and Huni, J.P.R., Light Metals 1986, 387–395.

    Google Scholar 

  38. Begunov, A.I., Kulikov, V.N. and Grinberg, I.S., Light Metals 1996, 369–374.

    Google Scholar 

  39. Henry, J.L. and Holliday, R.D., J. Metals 9, 1957, 1384–1385.

    Google Scholar 

  40. Holliday, R.D. and Henry, J.L., Ind. Eng. Chem. 51, 1959, 1289–1292.

    Article  Google Scholar 

  41. Nordmo, F., and Thonstad, J., Electrochim. Acta 30,1985,741–745.

    Article  Google Scholar 

  42. Øygård, A., Halvorsen, T.A., Thonstad, J., Røe, T. and Bugge, M., Light Metals 1995,279–287.

    Google Scholar 

  43. Berge, I., Huglen, R., Bugge, M., Lindstom, J. and Røe, T., Light Metals 1994, 389–392.

    Google Scholar 

  44. Tabereaux, AT., JOM 46 (11), 1994, 32–34.

    Article  Google Scholar 

  45. Tabereaux, A.T., Richards, N.E. and Satchel, C.E., Light Metals 1995, 325–333.

    Google Scholar 

  46. Bereciartu, J., Light Metals 1986, 371–376.

    Google Scholar 

  47. Meyer, H.J. and Earley, D.G., Light Metals 1986, 365–370.

    Google Scholar 

  48. Paulsen, K.A., Mellerud, T. and Thuestad, J.G., Light Metals 1986, 377–383.

    Google Scholar 

  49. Kachanovskaya, I.S., Sirayev, N.S., Lebedeva, I.E., Romanov, V.P. and Kuznetsov, E.I., Sov. J. Non-Ferrous Met. 14 (4), 1973, 28–31.

    Google Scholar 

  50. Taylor, M.P., Welch, B.J. and Keniry, J.T., J. Electroanal. Chem., 168,1984,179–192.

    Article  Google Scholar 

  51. Reverdy, M., 11th Int. course on process metallurgy of aluminium, NTH, Trondheim, Norway, 1992, Ch. 8, 1–81.

    Google Scholar 

  52. Levenig, B., Light Metals 1995, 387–389.

    Google Scholar 

  53. Jie, L., Yongzhong, H., Huazhang, W. and Yexiang, L., Light Metals 1994,441–447.

    Google Scholar 

  54. Grjotheim, K., Kvande, H. and Qiu, Z., JOM 47 (11), 1995, 32–35.

    Article  Google Scholar 

  55. Brandtsaeg, S.R., Paulsen, K.A. and Thovsen, K., Light Metals 1988, 603–606.

    Google Scholar 

  56. Saksvikronning, T., Valsvik, G. and Hove, S.J., Light Metals 1982, 553–557.

    Google Scholar 

  57. Buzunov, V.Yu., Shestakov, V.M., Polyakov, P.V., Thikhomirov, V.N. and Resmyatov, S.S., Tsvetnye Met. 35 (6), 1994, 30–33.

    Google Scholar 

  58. Paulsen, K.A., Rolland, W.R., Larsen, A. and Bugge, M., Light Metals 1997, 195–199.

    Google Scholar 

  59. Pedersen, T.B., Bentzen, H.J., Jensen, M., Larsen, W., Olsen, A.T., Pedersen, R. and Syrdal, A.K., Light Metals 1998,221–226.

    Google Scholar 

  60. Hydro Aluminium, Karmoy, Norway, Private communications, July 1999.

    Google Scholar 

  61. Utigard, T.A., Bustos, A.A. and Dahl, T., US Patent 5,759,382, Jun. 2, 1998.

    Google Scholar 

  62. Utigard, T.A., Kapusta, J.P. and Bustos, A.A., Proceedings of the International Symposium on Light Metals, Quebec City, Aug. 1999, 17–25.

    Google Scholar 

  63. Diep, Q.B., Thonstad, J. and Rye, K.A., ZSNP VIII Al Symposium, 25–27 Sept, 1995, Slovakia, 21–27.

    Google Scholar 

  64. Xue, J. and Øye, H.A., Light Metals 1999,247–253.

    Google Scholar 

  65. Zhang, X.F., McLean, A. and Sommerville, I.D., Steelmaking conference proceedings, Washington, April 1991, pp. 659–662.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Thonstad, J., Utigard, T.A., Vogt, H. (2016). On the anode effect in aluminum electrolysis. In: Bearne, G., Dupuis, M., Tarcy, G. (eds) Essential Readings in Light Metals. Springer, Cham. https://doi.org/10.1007/978-3-319-48156-2_18

Download citation

Publish with us

Policies and ethics