Skip to main content

The Dissolution of Alumina in Cryolite Melts

  • Chapter
Essential Readings in Light Metals

Abstract

By means of existing theory for mass and heat transfer to spherical particles the dissolution time for individual alumina grains dispersed in cryolite melts was calculated to be of the order of 10 s, in agreement with experiments. Heat transfer is limiting during heat-up but not during dissolution. Under normal conditions alumina powder agglomerates when being fed to the melt, and lumps are formed which dissolve much more slowly (minutes, hours). An electroanalytical technique was used to monitor the alumina concentration in the bath, and dissolution rates were determined for alumina being fed to the bath as well as for alumina resting at the bottom and for rotating alumina discs. The results were fitted to models for mass transfer controlled reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Jain, S. B. Tricklebank, B. J. Welch and D. J. Williams, “Interaction of Aluminas with Aluminium Smelting Electrolytes”, Light Metals 1983, 609–622.

    Google Scholar 

  2. A. S. Bagshaw, G. Kuschel, M. P. Taylor, S. B. Tricklebank and B. J. Welch, “Effect of Operating Conditions on the Dissolution of Primary and Secondary Alumina Powders in Electrolysis”, Light Metals 1985, 649–659.

    Google Scholar 

  3. Y. Bertaud and A. Lectard, “Aluminum Pechiney Specifications for Optimising the Aluminas Used in Sidebreak and Point Feeding Reduction Pots”, Light Metals 1984, 667–686.

    Google Scholar 

  4. R. Oedegaard, S. Roenning, S. Rolseth and J. Thonstad, “On Alumina Phase Transformation and Crust Formation in Aluminum Cells”, Light Metals 1985, 695–709.

    Google Scholar 

  5. R. B. Bird, W. E. Steward, and E. N. Lightfoot, Transport Phenomena. (New York, NY: John Wiley & Sons, Inc., 1960) p. 647, 409.

    Google Scholar 

  6. O. A. Asbjørnsen and J. A. Andersen, “Kinetics and Transport Processes in the Dissolution of Aluminium Oxide in Cryolite Melts”, Light Metals 1977, Vol. 1., 137–152.

    Google Scholar 

  7. R. K. Jain, M. P. Taylor, S. B. Tricklebank and B. J. Welch, “A Study of the Relationship Between the Properties of Alumina and Its Interaction with Aluminium Smelting Electrolytes”, Proc. 1st Int. Symp. on Molten Salt Chem. and Tech., Kyoto, Japan, 1983, p. 59.

    Google Scholar 

  8. M. P. Taylor, B. J. Welch and R. McCibbin, “Effect of Convective Heat Transfer and Phase Change on the Stability of Aluminium Smelting Cells”, paper presented at the AIChE Annual Meeting, San Francisco, 25–30 Nov. 1984.

    Google Scholar 

  9. J. Thonstad, “Aluminium Electrolysis, Electrolyte and Electrochemistry”, in Advances in Molten Salt Chemistry, Vol. 6. ed. G. Mamantov, C. B. Mamantov and J. Braunstein, Elsevier, Amsterdam 1987, 73–126.

    Google Scholar 

  10. J. Thonstad, F. Nordmo and J. B. Paulsen, “Dissolution of Alumina in Molten Cryolite”, Met. Trans. (1972) 403–408.

    Google Scholar 

  11. J. Gerlach, U. Hennig and K. Kern, “The Dissolution of Aluminum Oxide in Cryolite Melts”, Met. Trnas. 6B (1975) 83–86.

    Google Scholar 

  12. P. M. Shurygin, V. N. Boronenkov and V. I. Kryuk, Isv. Vyssh. Uchebn. Zav. Tsvet. Met. 5 (3) (1962) 59–66. Ibid. 5 (4) 1962, 59–66.

    Google Scholar 

  13. P. Desclaux and M. Rolin, “Etude de coefficient de diffusion de l’alumine dans les melanges cryolithe-alumine”, Rev. Int. Hautes Temp, et Refract. 8 (1971) 227–236.

    Google Scholar 

  14. J. Gerlach, U. Hennig and H. D. Pötsch, “Zur Auf-losungskinetik von Aluminiuimoxid in Kryolith-schemlzen mit Zusätzen von Al2O3, AlF3 CaF2”, LiF oder MgF2 Erzmetali, 31 (1978) 496–504.

    Google Scholar 

  15. V. G. Levich, Physical Hydrodynamics. (Engle-wood Cliffs, N. J., Prentice Hall, Inc., 1962), pp. 60–72.

    Google Scholar 

  16. K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky and J. Thonstad, Aluminium Electrolysis. Fundamentals of the Hall-Heroult Process. (Aluminium-Verlag, Düsseldorf 1982) 181–182.

    Google Scholar 

  17. J. Thonstad, “Semicontinuous Determination of the Concentration of Alumina in the Electrolyte of Aluminum Cells”, Met. Trans. 8B (1977) 125–130.

    Article  Google Scholar 

  18. J. Thonstad, P. Johansen and E. W. Kristensen, “Some Properties of Alumina Sludge”, Light Metals 1980, 227–239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Thonstad, J., Solheim, A., Rolseth, S., Skar, O. (2016). The Dissolution of Alumina in Cryolite Melts. In: Bearne, G., Dupuis, M., Tarcy, G. (eds) Essential Readings in Light Metals. Springer, Cham. https://doi.org/10.1007/978-3-319-48156-2_14

Download citation

Publish with us

Policies and ethics