Skip to main content

Adsorption of Platinum and Palladium from Hydrochloric Acid Media by Hydrothermally Treated Garlic Waste Gel

  • Chapter
Rare Metal Technology 2016
  • 797 Accesses

Abstract

A new approach of recovering platinum and palladium from electronic wastes by hydrochloric acid leaching followed by selective adsorption on low-cost and environmentally benign biomass sorbent prepared from easily available agriculture waste is suggested. The obtained adsorbents were prepared by a combination of chemical modification and hydrothermal carbonization process with (NH4)2C2O4. It was found that the maximum adsorption capacity of hydrothermal carbonized garlic peel for Pt(IV) and Pd(II) was 1.64 and 0.42 mol/kg respectively. The Langmuir adsorption isotherm was applied to describe the adsorption process. Kinetics of the Pt(VI) and Pd(II) ions adsorption was found to follow pseudo-second-order rate equation. The adsorbents were examined by scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). Based on the characterization results, a possible mechanism of Pt(IV) and Pd(II) ions adsorption with the hydrothermal carbonized garlic peel was proposed. This study provides a promising adsorbent with efficient adsorption property for platinum and palladium recovery from the leach solution of electronic wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Fujiware, A. Ramesh, T. Maki, H. Hasegawa, K. Ueda, 2007. Adsorption of platinum(IV), palladium(II) and gold(III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. J. Hazard. Mater. 146: 39–50

    Article  Google Scholar 

  2. M. Gurung, B. B. Adhikari, H. Kawakita, K. Ohto, K. Inoue, S. Alam, 2011. Recovery of Au(III) by using low cost adsorbent prepared from persimmon tannin extract. Chem. Eng. J, 174, 556–563.

    Article  Google Scholar 

  3. M. Gurung, B. B. Adhikari, H. Kawakita, K. Ohto, K. Inoue, S. Alam, 2012. Selective recovery of precious metals from acidic leach liquor of circuit boards of spent mobile phones using chemically modified persimmon tannin gel. Ind. Eng. Chem. Res., 51, 11901–11913.

    Article  Google Scholar 

  4. M. Gurung, B. B. Adhikari, H. Kawakita, K. Ohto, K. Inoue, S. Alam, 2013. Recovery of gold and silver from spent mobile phones by means of acidothiourea leaching followed by adsorption using biosorbent prepared from persimmon tannin. Hydrometallurgy, 133, 84–93.

    Article  Google Scholar 

  5. J. L. Cortina, A. Warshawsky, N. Kahana, V. Kampel, C. H. Sampaio, R. M. Kautzmann, 2003. Kinetics of goldcyanide extraction using ion-exchange resins containing piperazine functionality. React. Funct. Polym, 54, 25–35.

    Article  Google Scholar 

  6. P. F. Sorensen, 1988. Gold recovery from carbon-in-pulp eluates by precipitation with a mineral acid III. The acid precipitation step in applications. Hydrometallurgy, 21(2), 249–254.

    Article  Google Scholar 

  7. P. Malik, A. P. Paiva, 2010. A novel solvent extraction route for the mutual separation of Platinum, Palladium, and Rhodium in hydrochloric acid media. Solv. Extr. Ion Exch, 28, 49–72.

    Article  Google Scholar 

  8. J. W. Phair, S. P. S. Badwal, 2006. Review of proton conductors for hydrogen separation. Ionics, 12, 103–115.

    Article  Google Scholar 

  9. Y. H. Ma, I. P. Mardilovich, E. E. Engwall, 2003. Thin composite palladium and palladium/alloy membranes for hydrogen separation. Annals. New York Academy of Sciences, 984, 346–360.

    Article  Google Scholar 

  10. K. L. Yeung, J. M. Sebastian, A. Varma, 1995. Novel preparation of Pd/Vycor composite membranes. Catal. Today, 25, 231–236.

    Article  Google Scholar 

  11. K. L. Yeung, R. Aravind, J. Szegner, A. Varma, 1996. Metal composite membranes: synthesis, characterization and reaction studies. Stud. In Surf. Sci. Catal. 101, 1349–1358.

    Article  Google Scholar 

  12. Y.S. Cheng, K. L. Yeung, 2001. Effects of electroless plating chemistry on the synthesis of palladium membranes. J. Membr. Sci., 182, 195–203.

    Article  Google Scholar 

  13. W. S. W. Ngah, M. A. K. Hanafiah, 2008. Adsorption of copper on rubber (Hevea brasiliensis) leaf power: kinetic, equilibrium and thermodynamic studies. Biochem. Eng. J, 39, 521–530.

    Article  Google Scholar 

  14. A. Nakajima, T. Sakaguchi, 1993. Uptake and recovery of gold by immobilized persimmon tannin. J. Chem. Technol. Biotechnol., 57, 321–326.

    Article  Google Scholar 

  15. A. Nakajima, Y. Baba, 2004. Mechanism of hexavalent chromium adsorption by persimmon tannin gel. Water Res., 38, 2859–2864.

    Article  Google Scholar 

  16. T. Ogata, Y. Nakano, 2005. Mechanisms of gold recovery from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin. Water Res., 39, 4281–4286.

    Article  Google Scholar 

  17. M. Yurtsever, I. A. Sengil, 2009. Biosorption of Pb(II) ions by modified quebracho tannin resin. J. Hazard. Mater., 163, 58–64.

    Article  Google Scholar 

  18. X. Li, C. Zhang, R. Zhao, X. Lu, X. Xu, X. Jia, C. Wang, L. Li, 2013. Efficient adsorption of gold ions from aqueous systems with thioamide-group chelating nanofiber membranes. Chem. Eng. J., 229, 420–428.

    Article  Google Scholar 

  19. M. Gurung, B. B. Adhikari, S. Alam, H. Kawakita, K. Ohto, K. Inoue, 2013. Persimmon tannin-based new sorption material for resource recycling and recovery of precious metals. Chem. Eng. J., 228, 405–414.

    Article  Google Scholar 

  20. M.M. Titirici, M. Antonietti, 2010. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev, 39, 103–116.

    Article  Google Scholar 

  21. O.A. Mohammad, A.W.T. Ivy, S.L. Leo, 2011. Automobile adsorption air-conditioning system using oil palm biomass-based active carbon: A review. Renew. Sust. Energ. Rev. 15, 2061–2072.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Liang, B., Huang, K., Zhu, H., Alam, S. (2016). Adsorption of Platinum and Palladium from Hydrochloric Acid Media by Hydrothermally Treated Garlic Waste Gel. In: Alam, S., Kim, H., Neelameggham, N.R., Ouchi, T., Oosterhof, H. (eds) Rare Metal Technology 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48135-7_10

Download citation

Publish with us

Policies and ethics