Skip to main content

On Weibull Mixtures in Mechanical Properties of Castings

  • Chapter
Shape Casting: 5th International Symposium 2014
  • 935 Accesses

Abstract

A review of Weibull mixtures in the mechanical properties of castings is provided. Two distinct scenarios which result in Weibull mixtures in the mechanical properties of castings are introduced: (i) multiple defect distributions that lead to failure by the same mechanism are present in the casting, and (ii) there are multiple failure mechanisms in effect regardless of the type and size of defects. These two scenarios are discussed in detail with examples from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Griffith: Phil. Trans. Royal Soc. London. Ser. A, 221 (1921) 163–198.

    Article  Google Scholar 

  2. B. Epstein: J. American Stat. Assoc. 43 (1948) 403–412.

    Article  Google Scholar 

  3. F. T. Pierce: J. Textile Inst. 17 (1926) T355–T368.

    Article  Google Scholar 

  4. T.T. Shih: Eng. Frac. Meek, 13 (1980) 257–271.

    Article  Google Scholar 

  5. W. Weibull: J. Applied Mechanics, 13 (1951) 293–297.

    Google Scholar 

  6. H. Zahedi, M. Emamy, A. Razaghian, M. Mahta, J. Campbell, M. Tiryakioglu: Metall. Mater. Trans. A., 2007, vol. 38A, pp. 659–670.

    Article  Google Scholar 

  7. M. Tiryakioglu: unpublished work, Alotech, 2006.

    Google Scholar 

  8. M. Tiryakioglu, J. Campbell: Metall. Mater. Trans. A, 41 (2010) 3121–3129.

    Article  Google Scholar 

  9. S. Jiang, D. Keçecioglu, IEEE Trans on Reliability, 1992, vol. 41, pp. 241–247.

    Article  Google Scholar 

  10. W. Weibull: A statistical theory of the strength of materials. Proc. The Royal- Swedish Institute for Engineering Research. Nr. 151, 1939.

    Google Scholar 

  11. U.E. S. Pearson: “The Application of Statistical Methods to Industrial Standardisation and Quality Control”, British Standard No. 600—1935

    Google Scholar 

  12. W. Weibull, The phenomenon of rupture in solids, Royal Swedish Institute of Engineering Research (Ingenioersvetenskaps Akad. Handl.), Stockholm, Vol. 153, 1–55, 1939.

    Google Scholar 

  13. C. Nyahumwa, N. R. Green, J. Campbell; Metall. Mater. Trans. A, 32A (2001) 349–358.

    Article  Google Scholar 

  14. Q. G. Wang, C. Davidson, J. Griffiths, P. Crepeau; Metall. Mater. Trans. B, 37B (2006) 887–895.

    Article  Google Scholar 

  15. C. Nyahumwa, N. R. Green, J. Campbell, AFS Trans., 106 (1998) 215–223.

    Google Scholar 

  16. B. Zhang, D. R. Poirier, W. Chen; Metall. Mater. Trans. A, 30 (1999) 2659–2666.

    Article  Google Scholar 

  17. C. A. Johnson: Frac. Mech. Ceram 5 (1983) 365–386.

    Article  Google Scholar 

  18. C. D. Tarum: SAE Technical Paper, 1999-01-0055, 1999.

    Google Scholar 

  19. G. Eisaabadi B. P. Davami, S. K. Kim, M. Tiryakioglu: Materials Science and Engineering A, 579 (2013) 64–70.

    Article  Google Scholar 

  20. Q.G. Wang, D. Apelian, D.A. Lados: J. Light Metals, 1 (2001) 73–84.

    Article  Google Scholar 

  21. J. T. Staley, Jr., M. Tiryakioglu, J. Campbell: Mater. Sci. Eng. A, 465 (2007) 136–145.

    Article  Google Scholar 

  22. M. Tiryakioglu, in this volume.

    Google Scholar 

  23. M. Tiryakioglu, J. Campbell, C. Nyahumwa: Metall. Mater. Trans. B, 42 (2011) 1098–1103.

    Article  Google Scholar 

  24. O. Umezawa, K. Nagai and K. Ishikawa: Tetsu to Hagane, 75 (1989) 159–166.

    Google Scholar 

  25. H. Mughrabi: Fatigue and Fracture of Eng. Mater. Structures, 25 (2002) 755–764.

    Article  Google Scholar 

  26. K. Sadananda, A.K. Vasudevan, N. Phan: Intl. J. Fatigue, 29 (2007) 2060–2071.

    Article  Google Scholar 

  27. C. Przybyla, R. Prasannavenkatesan, N. Salajegheh, D. L. McDowell: Intl. J. Fatigue, 32 (2010) 512–525.

    Article  Google Scholar 

  28. Y. Nakamura, T. Sakai, H. Hirano, K.S. Ravi Chandran: Intl. J. Fatigue, 32 (2010) 621–626

    Article  Google Scholar 

  29. C. Bathias: Fatigue Fract Engng Mater Struct., 22 (1999) 559–565.

    Article  Google Scholar 

  30. O. Umezawa, K. Nagai: ISIJ International, 37 (1997) 1170–1179.

    Article  Google Scholar 

  31. B. Skallerud, T. Iveland, G. Härkegard: Eng. Fracture Mech., 44 (1993) 857–874.

    Article  Google Scholar 

  32. S. A. Barter, L. Molent, N. Goldsmith, R. Jones: J. Eng Failure Analysis, 12 (2005) 99–128.

    Article  Google Scholar 

  33. B.R. Crawford, C. Loader, A.R. Ward, C. Urbani, M.R. Bache, S.H. Spence, D.G. Hay, W.J. Evans, G. Clark, A.J. Stonham: Fatigue Fract. of Eng. Mater. Struc., 28 (2005) 795–808.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Tiryakioğlu, M. (2014). On Weibull Mixtures in Mechanical Properties of Castings. In: Tiryakioğlu, M., Campbell, J., Byczynski, G. (eds) Shape Casting: 5th International Symposium 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-48130-2_26

Download citation

Publish with us

Policies and ethics