Skip to main content

Bulk Metallic Glass: A Superior Erosion and Cavitation Resistant Material

  • Conference paper
TMS 2015 144th Annual Meeting & Exhibition

Abstract

We report on the slurry erosion and cavitation behavior of a zirconium based bulk metallic glass (BMG), Zr44Ti11Cu10Ni10Be25. Slurry erosion and cavitation tests were carried out using a non-circulating type test rig at different impingement angles. For comparative analysis, commonly used hydroturbine steel, CA6NM (13Cr4Ni), was also evaluated under similar test conditions. For low impingement angles, BMG demonstrated nearly 3 times higher erosion resistance compared to CA6NM. However, under normal impingement condition, BMG showed marginally better erosion performance. The cavitation resistance for BMG was four times higher compared to hydroturbine steel. The unusually high erosion resistance for BMG is attributed to its uniform amorphous structure with no grain boundaries, higher hardness, and ability to accommodate strain through localized shear bands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Franc and J. M. Michel: Fundamentals of Cavitation, (Kluwer Academic Publishers, Dordrecht, 2004).

    Google Scholar 

  2. Y. Iwabuchi, S. Sawada, Metallurgical characteristics of a large hydraulic runner casting of type 13Cr-Ni stainless steel, ASTM, 1982, pp. 332–354.

    Google Scholar 

  3. H.S. Grewal, S. Bhandari, H. Singh, Parametric study of slurry-erosion of hydroturbine steels with and without detonation gun spray coatings using taguchi technique, Metall. Mater. Trans. A, 43 (2012) 3387–3401.

    Article  Google Scholar 

  4. B. Mann, V. Arya, A. Maiti, M. Rao, P. Joshi, Corrosion and erosion performance of HVOF/TiAlN PVD coatings and candidate materials for high pressure gate valve application, Wear, 260 (2006) 75–82.

    Article  Google Scholar 

  5. B.S. Mann, High-energy particle impact wear resistance of hard coatings and their application in hydroturbines, Wear, 237 (2000) 140–146.

    Article  Google Scholar 

  6. J. Santa, J. Baena, A. Toro, Slurry erosion of thermal spray coatings and stainless steels for hydraulic machinery, Wear, 263 (2007) 258–264.

    Article  Google Scholar 

  7. J.F. Santa, L.A. Espitia, J.A. Blanco, S.A. Romo, A. Toro, Slurry and cavitation erosion resistance of thermal spray coatings, Wear, 267 (2009) 160–167.

    Article  Google Scholar 

  8. F. Mohammadi, J. Luo, Effect of cold work on erosion–corrosion of 304 stainless steel, Corr. Sci., 53 (2011) 549–556.

    Article  Google Scholar 

  9. A. A. C. Recco, D. López, A. F. Bevilacqua, F. Silva, A. P. Tschiptschin, Improvement of the slurry erosion resistance of an austenitic stainless steel with combinations of surface treatments: Nitriding and TiN coating, Surf. Coat. Techno., 202 (2007) 993–997.

    Article  Google Scholar 

  10. J. Xu, C. Zhuo, D. Han, J. Tao, L. Liu, S. Jiang, Erosion–corrosion behavior of nano-particle-reinforced Ni matrix composite alloying layer by duplex surface treatment in aqueous slurry environment, Corr. Sci., 51 (2009) 1055–1068.

    Article  Google Scholar 

  11. W.L. Johnson, Bulk glass-forming metallic alloys: Science and Technology, Mat. Res. Bull., 24 (1999) 42–56.

    Article  Google Scholar 

  12. A. L. Greer, Metallic glasses, Science, 267 (1995)1947–1953.

    Article  Google Scholar 

  13. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48 (2000) 279–306.

    Article  Google Scholar 

  14. J. Schroers, Processing of bulk metallic glass, Adv. Mater., 22 (2010) 1566–1597.

    Article  Google Scholar 

  15. J. Schroers, On the formability of bulk metallic glass in its supercooled liquid state, Acta Mater., 56 (2008) 471–478.

    Article  Google Scholar 

  16. I. Finnie, Some reflections on the past and future of erosion, Wear, 186–187 (1995) 1–10.

    Article  Google Scholar 

  17. I. Finnie, Erosion of surfaces by solid particles, Wear, 3 (1960) 87–103.

    Article  Google Scholar 

  18. G.P. Tilly, Sand erosion of metals and plastics: A brief review, Wear, 14 (1969) 241–248.

    Article  Google Scholar 

  19. G.F. Truscott, A literature survey on abrasive wear in hydraulic machinery, Wear, 20 (1972) 29–50.

    Article  Google Scholar 

  20. D.C. Wen, Erosion and wear behavior of nitrocarburized DC53 tool steel, Wear, 268 (2010) 629–636.

    Article  Google Scholar 

  21. Q. An, G. Garrett, K. Samwer, Y. Liu, S.V. Zybin, S.N. Luo, M.D. Demetriou, W.L. Johnson, and W.A. Goddard, Atomistic characterization of stochastic cavitation of a binary metallic liquid under negative pressure, J. Phys. Chem., 2 (2011) 1320–1323.

    Google Scholar 

  22. W. J. Tomlinson and S. J. Matthews, Cavitation erosion of structural ceramics, Ceram. Int., 20 (1994) 201–209.

    Article  Google Scholar 

  23. J. Lu, K. Zumgahr, and J. Schneider, Microstructural Effects on the resistance to cavitation erosion of ZrO2 ceramics in Water, Wear, 265 (2008) 1680–1686.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Arora, H.S., Aditya, A.V., Mukherjee, S. (2015). Bulk Metallic Glass: A Superior Erosion and Cavitation Resistant Material. In: TMS 2015 144th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48127-2_82

Download citation

Publish with us

Policies and ethics