Skip to main content

Understanding Superfine Graphite Iron Solidification Through Interrupted Solidification Experiments

  • Chapter
Advances in the Science and Engineering of Casting Solidification

Abstract

The tensile strength of near-eutectic gray iron can be increased from 230–300 to 300–345MPa, without a significant increase in hardness, through 0.3–0.4%Ti addition to low sulfur (<0.01%S) iron. This is due to the combination of higher primary austenite/eutectic ratio and the precipitation of superfine-interdendritic-graphite (SIG), characterized by a fine (10–20μm) and highly branched fibrous structure.

To reveal the influence of the %Ti on graphite shape evolution during solidification and its relationship to the solid fraction, quenching experiments at successive solidification stages were carried out on hypoeutectic alloys with 0.18% and 0.32%Ti. The graphite shape factors were measured, and their evolution as a function of the titanium content and the solid fraction was analyzed. SEM was used to evaluate the change in graphite shape during early solidification, as well as its nucleation and growth. The correlation between the oxygen in the melt and SIG formation was also explored. It was concluded that nucleation of graphite in SIG irons occurs on graphite substrates at the austenite/liquid interface because of carbon supersaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Lux, Giesserei Forschung, 19 (1967) 141

    Google Scholar 

  2. P. Larrañaga, J. Sertucha, A. Loizaga, R. Suárez, D.M. Stefanescu, AFS Trans. 120 (2012) 347–353

    Google Scholar 

  3. P. Larrañaga, J. Sertucha, A. Loizaga, R. Suárez, D.M. Stefanescu, AFS Trans. 120 (2012) 337–346

    Google Scholar 

  4. P. Basutkar, S Yew and C. Loper, Trans. AFS 77 (1969) 321–28

    Google Scholar 

  5. G. Ruff and J.F. Wallace, Trans. AFS 84 (1976) 705–728

    Google Scholar 

  6. A. Okada and H. Miyake, The Unknown World of Cast Iron (in Japanese), KANSAI Univ. Press (1996) 141

    Google Scholar 

  7. H. Nakae and K. Fujimoto, in Key Engineering Materials, Trans Tech Publ. Switzerland 457 (2011) 25–30

    Article  Google Scholar 

  8. K.B. Wilford and F.G. Wilson, British Foundryman 78 (1985) 301 and 364

    Google Scholar 

  9. B. Lux, in Recent Research on Cast Iron, H.D. Merchant ed., Gordon and Breach (1968) 241

    Google Scholar 

  10. G.X. Sun and C.R. Loper, Trans. AFS 91 (1983) 639–646

    Google Scholar 

  11. E. Moumeni, D.M. Stefanescu, N.S. Tiedje, P. Larrañaga, J.H. Hattel, Metall. Mater. Trans. A, 44A, 11 (2013) 5134–5146

    Article  Google Scholar 

  12. G. Ohira, T. Sato, Y. Sayama, in The Metallurgy of Cast Iron, St. Saphorin, Switzerland, Georgi Publ. Co. (1974) 295

    Google Scholar 

  13. H. Nieswaag, A.J. Zuithoff, in: The Metallurgy of Cast Iron, B. Lux, I. Minkoff, F. Mollard editors, Georgi Pub. Co., St. Saphorin, Switzerland (1975) 327–351

    Google Scholar 

  14. T. Fujikawa, K. Nakamura, H. Sumimoto, S. Kiguchi, M Hatate, Int. J. Cast Metals Res. 11 (5) 313

    Google Scholar 

  15. H. Nakae, H. Sin, Int. J. Cast Metals Res. 11 (5) 345

    Google Scholar 

  16. J. Lacaze, L. Magnusson Åberg, J. Sertucha, in 2013 Keith Millis Symposium on Ductile Iron, American Foundry Soc., Nashville, TN (2013) 232–240

    Google Scholar 

  17. B. Lux, W. Kurz, ISI publication 110 (1967) 193–203

    Google Scholar 

  18. E. Lundbäck, I.L. Svensson, J.T. Thorgrimsson, in Solidification 87, Inst. of Metals (1987) 113–117

    Google Scholar 

  19. B. Dhindaw and J.D. Verhoeven, Metall. Trans. A, 11A (1980) 1049–57

    Article  Google Scholar 

  20. J.C. Ruth, M. Turpin, Mém. Sci. Rev. Métall. 66 (1969) 633–640

    Google Scholar 

  21. R.J. Brigham, G.R. Purdy, J.S. Kirkaldy, Canadian Metall. Quaterly 3 (1964) 239–243

    Article  Google Scholar 

  22. J.S. Park and J.D. Verhoeven, Metall. Mater. Trans. A, 27A (1996) 2740

    Article  Google Scholar 

  23. B. Lux, I. Minkoff, F. Mollard, E. Thury, in: The Metallurgy of Cast Iron, B. Lux, I. Minkoff, F. Mollard editors, Georgi Pub. Co., St. Saphorin, Switzerland (1975) 495–505

    Google Scholar 

  24. G. Alonso, D.M. Stefanescu, P. Larrañaga, R. Suarez, in Science and Engineering of Cast Iron 10, Mar del Plata, Argentina (2014) to be published

    Google Scholar 

  25. G. Alonso, D.M. Stefanescu, P. Larrañaga, J. Sertucha, R. Suárez, AFS Trans. 120 (2012) 329–335

    Google Scholar 

  26. W.C. Johnson and H.B. Smartt, Metall. Trans. A 8A (1977) 553–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Alonso, G., Stefanescu, D.M., Larrañaga, P., De la Fuente, E., Aguado, E., Suarez, R. (2015). Understanding Superfine Graphite Iron Solidification Through Interrupted Solidification Experiments. In: Nastac, L., et al. Advances in the Science and Engineering of Casting Solidification. Springer, Cham. https://doi.org/10.1007/978-3-319-48117-3_41

Download citation

Publish with us

Policies and ethics