Skip to main content

What is in a Strain Hardening “Plateau”?

  • Chapter

Abstract

A yield plateau occurs in some Mg alloys during compressive deformation that has been ascribed to the localization of twinning. In fine-grained AZ31, this plateau was explained by a region of large twin volume fraction nucleating in a small band and propagating, similar to a “Lüders band” like phenomena. Once the band traverses the entire gauge length, the sample begins to strain harden. Similarly, ZK60 samples exhibit the same Lüders like phenomena during extrusion direction compression as confirmed by digital image correlation. However, the band is not sufficient to fully explain the plateau in the stress-strain curve. Postmortem electron backscattered diffraction (EBSD) reveals the twin structure evolution through this plateau. It is found that twinning occurs in large elongated grains before spreading to the finer grains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapuis, A. & Driver, J. H. (2011). Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Materialia, 59(5) 1986–1994.

    Article  Google Scholar 

  2. Xin, Y., Wang, M., Zeng, Z., Nie, M., & Liu, Q. (2012). Strengthening and toughening of magnesium alloy by {10–12} extension twins. Scripta Materialia, 66(1), 25–28.

    Article  Google Scholar 

  3. Ma, Q., El Kadiri, H., Oppedal, A. L., Baird, J. C., Li, B., Horstemeyer, M. F., & Vogel, S. C. (2012). Twinning effects in a rod-textured AM30 Magnesium alloy. International Journal of Plasticity, 29, 60–76.

    Article  Google Scholar 

  4. Barnett, M. R., Keshavarz, Z., Beer, A. G., & Atwell, D. (2004). Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta materialia, 52(17), 5093–5103.

    Article  Google Scholar 

  5. Muránsky, O., Barnett, M. R., Luzin, V., & Vogel, S. (2010). On the correlation between deformation twinning and Lüders-like deformation in an extruded Mg alloy: In situ neutron diffraction and EPSC. 4 modelling. Materials Science and Engineering: A, 527(6), 1383–1394.

    Article  Google Scholar 

  6. Barnett, M. R., Nave, M. D., & Ghaderi, A. (2012). Yield point elongation due to twinning in a magnesium alloy. Acta materialia, 60(4), 1433–1443.

    Article  Google Scholar 

  7. Hazeli, K., Cuadra, J., Vanniamparambil, P. A., & Kontsos, A. (2013). In situ identification of twin-related bands near yielding in a magnesium alloy. Scripta Materialia, 68(1), 83–86.

    Article  Google Scholar 

  8. Agnew, S. R., Calhoun, C. A., & Clausen, B. (2014). In-situ Neutron diffraction study of aging in alloy ZK60A. Magnesium Technology 2014, 387–394.

    Google Scholar 

  9. Jain, A., & Agnew, S. R. (2007). Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet. Materials Science and Engineering: A, 462(1), 29–36.

    Article  Google Scholar 

  10. Bourke, M. A. M., Dunand, D. C., & Ustundag, E., “SMARTS-a spectrometer for strain measurement in engineering materials.” Applied Physics A 74 (2002), S1707–S1709.

    Article  Google Scholar 

  11. Von Dreele, R. B., “Quantitative Texture Analysis by Rietveld Refinement” J. Applied Crystallography 30 (4) (1997), 517–25

    Article  Google Scholar 

  12. Turner, P. A., & Tomé, C. N. (1994). A study of residual stresses in Zircaloy-2 with rod texture. Acta metallurgica et Materialia, 42(12), 4143–4153.

    Article  Google Scholar 

  13. Kocks, U. F., & Mecking, H. (2003). Physics and phenomenology of strain hardening: the FCC case. Progress in materials science, 48(3), 171–273.

    Article  Google Scholar 

  14. Ecob, N., & Ralph, B. (1983). The effect of grain size on deformation twinning in a textured zinc alloy. Journal of Materials Science, 18(8), 2419–2429.

    Article  Google Scholar 

  15. Clausen, B., Tomé, C. N., Brown, D. W., & Agnew, S. R. (2008). Reorientation and stress relaxation due to twinning: modeling and experimental characterization for Mg. Acta Materialia, 56(11), 2456–2468.

    Article  Google Scholar 

  16. Wu, L., Jain, A., Brown, D. W., Stoica, G. M., Agnew, S. R., Clausen, B., & Liaw, P. K. (2008). Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Materialia, 56(4), 688–695.

    Article  Google Scholar 

  17. El Kadiri, H., Barrett, C. D., Wang, J., & Tomé, C. N. (2015). Why are twins profuse in magnesium?. Acta Materialia, 85, 354–361.

    Article  Google Scholar 

  18. Lou, X. Y., Li, M., Boger, R. K., Agnew, S. R., & Wagoner, R. H. (2007). Hardening evolution of AZ31B Mg sheet. International Journal of Plasticity, 23(1), 44–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Agnew, S.R., Calhoun, C.A., Bhattacharyya, J.J. (2016). What is in a Strain Hardening “Plateau”?. In: Singh, A., Solanki, K., Manuel, M.V., Neelameggham, N.R. (eds) Magnesium Technology 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48114-2_38

Download citation

Publish with us

Policies and ethics