Skip to main content

Hot Tearing in Magnesium-Rare Earth Alloys

  • Chapter
Magnesium Technology 2016

Abstract

Magnesium-rare earth based alloys generally show good creep resistance at elevated temperatures and are consequently very promising candidates for powertrain applications. However, for magnesium-rare earth alloys to be used in high pressure die-cast components, they also need to have sufficient die-castability. This paper analyses the data from a series of investigations into binary and ternary magnesium-rare earth (RE) based alloys with the REs including La, Ce, Nd, Y and Gd, with an aim to identify alloy compositions that are castable. It is found that Mg-La based alloys are least susceptible to hot tearing whilst alloys containing Nd, Y or Gd tend to have very high hot tearing susceptibility. The hot tearing susceptibility of Mg-RE-Zn and Mg-Al-RE alloys is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Luo and M.Ö. Pekgüleryüz, “Review Cast Magnesium Alloys for Elevated Temperature Applications.” Journal of Materials Science, 29 (1994), 5259–5271.

    Article  Google Scholar 

  2. A. Luo, “Recent Mg alloy development for elevated temperature applications.” International Materials Reviews, 49(1) (2004), 13–30.

    Article  Google Scholar 

  3. M.Ö. Pekgüleryüz and M. Celikin, “Creep resistance in magnesium alloys.” International Materials Reviews, 55(4) (2010), 197–217.

    Article  Google Scholar 

  4. A. Luo, “Magnesium: current and potential automotive applications.” JOM, 54(2) (2002), 42–48.

    Article  Google Scholar 

  5. S.M. Zhu, et al., “Evaluation of Magnesium Die-casting Alloys for Elevated Temperature Applications: Mcrostructure, Tensile Properties and Creep Resistance.” Metallurgical & Materials Transactions A, 46(8) (2015), 3543–3554.

    Article  Google Scholar 

  6. T.L. Chia, et al., “The effect of alloy composition on the micro structure and tensile properties of binary Mg-rare earth alloys.” Intermetallics, 17 (2009), 481–490.

    Article  Google Scholar 

  7. S.M. Zhu, et al., “The relationship between micro structure and creep resistance in die-cast magnesium-rare earth alloys.” Scripta Materialia, 63(7) (2010), 698–703.

    Article  Google Scholar 

  8. M.A. Easton, et al., “An a priori hot tearing indicator applied to die-cast magnesium-rare earth alloys.” Metallurgical & Materials Transactions A, 45A(7) (2014), 3586–3595.

    Article  Google Scholar 

  9. C. Antion, et al., “Hardening precipitation in a Mg-4Y-3RE alloy.” Acta Materialia, 51(18) (2003), 5335–5348.

    Article  Google Scholar 

  10. P.J. Apps, et al., “Precipitation reactions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium.” Scripta Materialia, 48 (2003), 1023–1028.

    Article  Google Scholar 

  11. C. Antion, et al., “Hardening precipitation and mechanical properties in new Mg-Mn-Y-Gd alloys.” International Journal of Materials Research, 99 (2008), 168–177.

    Article  Google Scholar 

  12. J.F. Nie, et al., “Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn.” Scripta Materialia, 53(9) (2005), 1049–1053.

    Article  Google Scholar 

  13. D. Choudhuri, et al., “Role of Zn in enhancing the creep resistance of Mg-RE alloys.” Scripta Materialia, 86 (2014), 32–35.

    Article  Google Scholar 

  14. S. Gavras, et al., “Microstructure and property evaluation of high-pressure die-cast Mg-La-rare earth (Nd, Y or Gd) alloys.” Journal of Alloys and Compounds, 597 (2014), 21–29.

    Article  Google Scholar 

  15. M.Ö. Pekgüleryüz and P. Vermette, “Developing castability index for magnesium die casting alloys.” International Journal of Cast Metals Research, 22(5) (2009), 357–366.

    Article  Google Scholar 

  16. K. Strobel, et al., “Evaluation of the castability of high pressure die cast magnesium based alloys.” International Journal of Cast Metals Research, 23(2) (2010), 81–91.

    Article  Google Scholar 

  17. R.A. Dodd, et al., “Hot tearing of magnesium casting alloys.” AFS Transactions, 65 (1957), 110–117.

    Google Scholar 

  18. R.A. Rossenberg, et al., “Nonferrous binary alloys hot tearing.” AFS Transactions, 68 (1960), 518–528.

    Google Scholar 

  19. G. Cao and S. Kau, “Hot cracking of binary Mg-Al alloy castings.” Materials Science & Engineering A, 417 (2006), 230–238.

    Article  Google Scholar 

  20. S. Instane, et al., “New apparatus for characterising tensile strength development and hot cracking in the mushy zone.” International Journal of Cast Metals Research, 12 (2000), 441–456.

    Article  Google Scholar 

  21. D.G. Eskin, et al., “Contraction of aluminum alloys during and after solidification.” Metallurgical and Materials Transactions A, 35A(4) (2004), 1325–1335.

    Article  Google Scholar 

  22. M.G. Pokorny, et al., “Simulation of stresses during casting of binary magnesium-aluminum alloys.” Metallurgical & Materials Transactions A, 41A(12) (2010), 3196–3207.

    Article  Google Scholar 

  23. L. Bichler and C. Ravindran, “New developments in assessing hot tearing in magnesium alloy castings.” Materials and Design, 31 (2010), S17–S23.

    Article  Google Scholar 

  24. M.A. Easton, et al., “The role of crystallography and thermodynamics on phase selection in binary magnesium-rare earth (Ce or Nd) alloys.” Acta Materialia, 60 (2012), 4420–4430.

    Article  Google Scholar 

  25. T.W. Clyne and G.J. Davies, “The influence of composition on solidification cracking susceptibility in binary alloy systems.” British Foundryman, 74 (1981), 65–73.

    Google Scholar 

  26. M. Rappaz, et al., “A new hot-tearing criterion.” Metallurgical and Materials Transactions A, 30A (1999), 449–455.

    Article  Google Scholar 

  27. M. M’Hamdi, et al., “TearSim: A two-phase model addresssing hot tearing formation during aluminum direct chill casting.” Metallurgical and Materials Transactions A, 37A(10) (2006), 3069–3083.

    Article  Google Scholar 

  28. P. Gunde, et al., “Influence of yttrium additions on the hot tearing susceptibility of magnesium-zinc alloys.” Materials Science and Engineering A, 527 (2010), 7074–7079.

    Article  Google Scholar 

  29. L. Zhou, et al., “Influence of composition on hot tearing in binary Mg-Zn alloys.” International Journal of Cast Metals Research, 24(3/4) (2011), 170–176.

    Article  Google Scholar 

  30. Suyitno, et al., “Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 Pct Cu alloy.” Metallurgical and Materials Transactions A, 36A(6) (2005), 1537–1546.

    Article  Google Scholar 

  31. S. Kou, “A criterion for cracking during solidification.” Acta Materialia, 88 (2015), 366–374.

    Article  Google Scholar 

  32. J. Liu and S. Kou, “Effect of diffusion on susceptibility to cracking during solidification.” Acta Materialia, 100 (2015), 359–368.

    Article  Google Scholar 

  33. L. Sweet, et al., “Hot tear susceptibility of Al-Mg-Si-Fe alloys with varying iron contents.” Metallurgical & Materials Transactions A, 44A(12) (2013), 5396–5407.

    Article  Google Scholar 

  34. H. Huang, et al., “Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg-3Nd-0.2Zn-Zr Mg alloys” Transactions of the Nonferrous Metals Society of China, 24 (2014), 922–929.

    Article  Google Scholar 

  35. L.L. Rokhlin, “Magnesium alloys containing rare earth metals.” 2003, New York, USA: Taylor & Francis.

    Google Scholar 

  36. A. Srinivasan, et al., “Hot tearing characteristics of binary Mg-Gd castings.” Metallurgical & Materials Transactions A, 44 (5) (2013), 2285–2298.

    Article  Google Scholar 

  37. Z.G. Wang, et al., “Hot tearing susceptibility of binary Mg-Y alloy castings.” Materials and Design, 47 (2013), 90–100.

    Article  Google Scholar 

  38. J. Gröbner, et al., “Phase analysis of Mg-La-Nd and Mg-La-Ce alloys.” Intermetallics, 28 (2012), 92–101.

    Article  Google Scholar 

  39. R. Schmid-Fetzer, et al., Thermodynamics of phase formation in Mg-La-Ce-Nd alloys, in Magnesium Technology 2013, N. Hort, et al., Editors. 2013, TMS (The Minerals, Metals & Materials Society): San Antonio, Texas. p. 243–248.

    Google Scholar 

  40. W. Xiao, et al., “Casting defects and mechanical properties of high pressure die cast Mg-Zn-Al-RE alloys.” Advanced Engineering Materials, 14(1–2) (2012), 68–76.

    Article  Google Scholar 

  41. M.A. Easton, et al., An assessment of high pressure die cast Mg-Zn-Al alloys, in Magnesium Technology 2008, M.O. Pekguleryuz, et al., Editors. 2008, The Metals, Minerals and Materials Society: New Orleans LA. p. 323–328.

    Google Scholar 

  42. G. Foerster, Improved magnesium die casting alloys, in Transactions of the 8th SDCE International Die Casting Congress. 1975: Detroit. p. paper G-T75–112.

    Google Scholar 

  43. L. Zhou, et al., “Prediction of hot tearing susceptibility for Mg-Zn-(Al) Alloys.” Advanced Materials Research, 509 (2012), 138–146.

    Article  Google Scholar 

  44. G. Pettersen, et al., “Microstructure of a pressure die cast magnesium-4wt.percent aluminium alloy modified with rare earth additions.” Materials Science & Engineering A, 207(1) (1996), 115–120.

    Article  Google Scholar 

  45. P. Bakke and H. Westengen, “Die casting for high performance — focus on alloy development.” Advanced Engineering Materials, 5 (12) (2003), 879–885.

    Article  Google Scholar 

  46. L. Bichler, et al., “Onset of hot tearing in AE42 magnesium alloy.” Canadian Metallurgical Quarterly, 48(1) (2009), 81–90.

    Article  Google Scholar 

  47. P. Bakke, “unpublished research.” (2006), unpublished research.

    Google Scholar 

  48. G. Cao and S. Kou, “Hot tearing of ternary Mg-Al-Ca alloy castings.” Metallurgical & Materials Transactions A, 37A(12) (2006), 3647–3663.

    Article  Google Scholar 

  49. G. Cao, et al., “Onset of hot tearing in ternary Mg-Al-Sr alloy castings.” Metallurgical & Materials Transactions A, 41A(8) (2010), 2139–2150.

    Article  Google Scholar 

  50. J. Gröbner, et al., “Thermodynamic modeling of Al-Ce-Mg phase equilibria couple with key experiments.” Intermetallics, 10 (2002), 415–422.

    Article  Google Scholar 

  51. L. Jin, et al, “Al-Mg-RE (RE = La, Ce, Pr, Nd, Sm) systems: Thermodynamic evaluations and optimizations coupled with key experiments and Miedema’s model estimations.” Journal of Chemical Thermodynamics, 58 (2013), 166–195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Easton, M., Gavras, S., Gibson, M., Zhu, S., Nie, JF., Abbott, T. (2016). Hot Tearing in Magnesium-Rare Earth Alloys. In: Singh, A., Solanki, K., Manuel, M.V., Neelameggham, N.R. (eds) Magnesium Technology 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48114-2_25

Download citation

Publish with us

Policies and ethics