Skip to main content

Experimental Observation of Melting of the Effective Minkowski Spacetime in Cobalt-Based Ferrofluids

  • Chapter
  • First Online:

Part of the book series: Reviews in Plasmonics ((RIP,volume 2016))

Abstract

Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that they demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include microscopy, stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogues. Here we describe the behaviour of cobalt nanoparticle-based ferrofluid in the presence of an external magnetic field, and demonstrate that it forms a self-assembled hyperbolic metamaterial, which may be described as an effective 3D Minkowski spacetime for extraordinary photons. Moreover, such photons perceive thermal gradients in the ferrofluid as analogue of gravitational field, which obeys the Newton law. If the magnetic field is not strong enough, the effective Minkowski spacetime gradually melts under the influence of thermal fluctuations. On the other hand, it may restore itself if the magnetic field is increased back to its original value. Direct microscopic visualization of such a Minkowski spacetime melting/crystallization is presented, which is somewhat similar to hypothesized formation of the Minkowski spacetime in loop quantum cosmology and may mimic various cosmological Big Bang scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Podolskiy VA, Narimanov EE (2005) Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys Rev B 71:201101

    Article  Google Scholar 

  2. Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 14:8247–8256

    Article  PubMed  Google Scholar 

  3. Smolyaninov II, Hung YJ, Davis CC (2007) Magnifying superlens in the visible frequency range. Science 315:1699–1701

    Article  CAS  PubMed  Google Scholar 

  4. Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686

    Article  CAS  PubMed  Google Scholar 

  5. Jacob Z, Smolyaninov II, Narimanov EE (2012) Broadband Purcell effect: radiative decay engineering with metamaterials. Appl Phys Lett 100:181105

    Article  Google Scholar 

  6. Jacob Z, Kim J-Y, Naik GV, Boltasseva A, Narimanov EE, Shalaev VM (2010) Engineering photonic density of states using metamaterials. Appl Phys B 100:215

    Article  CAS  Google Scholar 

  7. Narimanov E, Noginov MA, Li H, Barnakov Y, Darker than black: radiation-absorbing metamaterial. In: Quantum electronics and laser science conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA6

    Google Scholar 

  8. Narimanov EE, Smolyaninov II, Beyond Stefan-Boltzmann law: thermal hyper-conductivity, arXiv:1109.5444

    Google Scholar 

  9. Smolyaninov, I. I., Smolyaninova, V. N., Is there a metamaterial route to high temperature superconductivity?, Adv Condens Matter Phys 2014, 2014, 479635

    Google Scholar 

  10. Smolyaninov II (2011) Critical opalescence in hyperbolic metamaterials. J Opt 13:125101

    Article  Google Scholar 

  11. Jacobson T (1995) Thermodynamics of spacetime: the Einstein equation of state. Phys Rev Lett 75:1260

    Article  CAS  PubMed  Google Scholar 

  12. Verlinde EP (2011) On the origin of gravity and the laws of Newton. J High Energy Phys 2011:29

    Article  Google Scholar 

  13. Barcelo C, Liberati S, Visser M (2005) Analog gravity. Living Rev Relat 8:12

    Article  Google Scholar 

  14. Smolyaninov II, Yost B, Bates E, Smolyaninova VN (2013) Experimental demonstration of metamaterial “multiverse” in a ferrofluid. Opt Express 21:14918–14925

    Article  PubMed  Google Scholar 

  15. Smolyaninov II (2013) Analogue gravity in hyperbolic metamaterials. Phys Rev A 88:033843

    Article  Google Scholar 

  16. Smolyaninov II (2014) Holographic duality in nonlinear hyperbolic metamaterials. J Opt 16:075101

    Article  Google Scholar 

  17. Smolyaninova VN, Yost B, Lahneman D, Narimanov E, Smolyaninov II (2014) Self-assembled tunable photonic hyper-crystals. Sci Rep 4:5706

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Smolyaninov II, Smolyaninova VN, Smolyaninov AI (2015) Experimental model of topological defects in Minkowski spacetime based on disordered ferrofluid: magnetic monopoles, cosmic strings and the spacetime cloak. Philos Trans R Soc A 373:20140360

    Article  Google Scholar 

  19. Mielczarek J, Signature change in loop quantum cosmology, arXiv:1207.4657 [gr-qc]

    Google Scholar 

  20. Bojowald M, Mielczarek J, Some implications of signature-change in cosmological models of loop quantum gravity, arXiv:1503.09154 [gr-qc]

    Google Scholar 

  21. Smolyaninov II (2011) Vacuum in strong magnetic field as a hyperbolic metamaterial. Phys Rev Lett 107:253903

    Article  PubMed  Google Scholar 

  22. Chernodub MN, Van Doorsselaere J, Verschelde H (2012) Spontaneous electromagnetic superconductivity and superfluidity of QCDxQED vacuum in strong magnetic field. Proc Sci QNP2012:109

    Google Scholar 

  23. Gao Y, Huang JP, Liu YM, Gao L, Yu KW, Zhang X (2010) Optical negative refraction in ferrofluids with magnetocontrollability. Phys Rev Lett 104:034501

    Article  CAS  PubMed  Google Scholar 

  24. Wangberg R, Elser J, Narimanov EE, Podolskiy VA (2006) Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media. J Opt Soc Am B 23:498–505

    Article  CAS  Google Scholar 

  25. Johnson PB, Christy RW (1974) Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys Rev B 9:5056

    Article  CAS  Google Scholar 

  26. Smolyaninov II, Narimanov EE (2010) Metric signature transitions in optical metamaterials. Phys Rev Lett 105:067402

    Article  PubMed  Google Scholar 

  27. Smolyaninov II, Hung YJ (2011) Modeling of time with metamaterials. JOSA B 28:1591–1595

    Article  CAS  Google Scholar 

  28. Landau L, Lifshitz E (2004) Field theory. Elsevier, Amsterdam

    Google Scholar 

  29. Brochard P, Grolier-Mazza V, Cabanel R (1997) Thermal nonlinear refraction in dye solutions: a study of the transient regime. J Opt Soc Am B 14:405–414

    Article  CAS  Google Scholar 

  30. Alkeskjold TT, Lægsgaard J, Bjarklev A, Hermann DS, Anawati A, Broeng J, Li J, Wu ST (2004) All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt Express 12:5857–5871

    Article  CAS  PubMed  Google Scholar 

  31. Kittel C (2004) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  32. Smolyaninov II (2014) Quantum topological transition in hyperbolic metamaterials based on high Tc superconductors. J Phys Condens Matter 26:305701

    Article  PubMed  Google Scholar 

  33. Smolyaninov II, Hung YJ, Hwang E (2012) Experimental modeling of cosmological inflation with metamaterials. Phys Lett A 376:2575–2579

    Article  CAS  Google Scholar 

  34. Smolyaninov II, Hwang E, Narimanov EE (2012) Hyperbolic metamaterial interfaces: hawking radiation from Rindler horizons and spacetime signature transtions. Phys Rev B 85:235122

    Article  Google Scholar 

  35. Davydov AS (1976) Quantum mechanics. Pergamon Press, New York

    Google Scholar 

Download references

Acknowledgments

This work is supported by the NSF grant DMR-1104676.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor I. Smolyaninov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Smolyaninov, I.I., Smolyaninova, V.N. (2017). Experimental Observation of Melting of the Effective Minkowski Spacetime in Cobalt-Based Ferrofluids. In: Geddes, C. (eds) Reviews in Plasmonics 2016. Reviews in Plasmonics, vol 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48081-7_7

Download citation

Publish with us

Policies and ethics