Skip to main content
Book cover

Open Abdomen pp 165–185Cite as

Management of the Open Abdomen in PICU

  • Chapter
  • First Online:
  • 1061 Accesses

Part of the book series: Hot Topics in Acute Care Surgery and Trauma ((HTACST))

Abstract

From a historical perspective, the open abdomen (OA; syn. abdomen apertum, laparostoma, temporary abdominal closure [TAC]) is a form of treatment in pediatric surgery that emerged with the development of methods to temporarily expand as well as reconstruct the abdominal wall within the framework of operative care for inborn abdominal wall defects [1–3]. It is in the context of abdominal wall approximation and adaptation that gastroschisis and omphalocele are still considered prototypes for diseases often leading to a predisposition for intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) [4–6].

This is a preview of subscription content, log in via an institution.

References

  1. Mortellaro VE, St Peter SD, Fike FB, Islam S. Review of the evidence on the closure of abdominal wall defects. Pediatr Surg Int. 2011;27(4):391–7.

    Article  PubMed  Google Scholar 

  2. Christison-Lagay ER, Kelleher CM, Langer JC. Neonatal abdominal wall defects. Semin Fetal Neonatal Med. 2011;16(3):164–72.

    Article  PubMed  Google Scholar 

  3. Van Hee R. Historical highlights in concept and treatment of abdominal compartment syndrome. Acta Clin Belg. 2007;62(Suppl 1):9–15.

    PubMed  Google Scholar 

  4. Divarci E, Karapinar B, Yalaz M, Ergun O, Celik A. Incidence and prognosis of intraabdominal hypertension and abdominal compartment syndrome in children. J Pediatr Surg. 2016;51(3):503–7.

    Article  PubMed  CAS  Google Scholar 

  5. De Waele JJ, Ejike JC, Leppaniemi A, et al. Intra-abdominal hypertension and abdominal compartment syndrome in pancreatitis, paediatrics, and trauma. Anaesthesiol Intensive Ther. 2015;47(3):219–27.

    Article  PubMed  Google Scholar 

  6. Jernigan TW, Fabian TC, Croce MA, et al. Staged management of giant abdominal wall defects: acute and long-term results. Ann Surg. 2003;238(3):349–55.

    PubMed  PubMed Central  Google Scholar 

  7. Kirkpatrick AW, Roberts DJ, De Waele J, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39(7):1190–206.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kron IL. A simple technique to accurately determine intra-abdominal pressure [letter]. Crit Care Med. 1989;17(7):714–5.

    Article  PubMed  CAS  Google Scholar 

  9. Davis PJ, Koottayi S, Taylor A, Butt WW. Comparison of indirect methods of measuring intra-abdominal pressure in children. Intensive Care Med. 2005;31(3):471–5.

    Article  PubMed  Google Scholar 

  10. De Keulenaer BL, Regli A, Dabrowski W, et al. Does femoral venous pressure measurement correlate well with intrabladder pressure measurement? A multicenter observational trial. Intensive Care Med. 2011;37(10):1620–7.

    Article  PubMed  Google Scholar 

  11. De Keulenaer BL, Regli A, Malbrain ML. Intra-abdominal measurement techniques: is there anything new? Am Surg. 2011;77(Suppl 1):S17–22.

    PubMed  Google Scholar 

  12. Desie N, Willems A, De Laet I, et al. Intra-abdominal pressure measurement using the FoleyManometer does not increase the risk for urinary tract infection in critically ill patients. Ann Intensive Care. 2012;2(Suppl 1):S10.

    PubMed  PubMed Central  Google Scholar 

  13. Malbrain ML. Different techniques to measure intra-abdominal pressure (IAP): time for a critical re-appraisal. Intensive Care Med. 2004;30(3):357–71.

    Article  PubMed  Google Scholar 

  14. Otto J, Binnebosel M, Junge K, et al. Harrahill’s technique: a simple screening test for intra-abdominal pressure measurement. Hernia. 2010;14(4):415–9.

    Article  PubMed  CAS  Google Scholar 

  15. Sfez M. Cardiorespiratory changes in children during laparoscopy. J Pediatr Surg. 1996;31(10):1465–6.

    Article  PubMed  CAS  Google Scholar 

  16. Sfez M, Guerard A, Desruelle P. Cardiorespiratory changes during laparoscopic fundoplication in children. Paediatr Anaesth. 1995;5(2):89–95.

    Article  PubMed  CAS  Google Scholar 

  17. Kaussen T, Steinau G, Srinivasan PK, et al. Recognition and management of abdominal compartment syndrome among German pediatric intensivists: results of a national survey. Ann Intensive Care. 2012;2(Suppl 1):S8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goldstein B, Giroir B, Randolph A. International consensus conference on pediatric S. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2–8.

    Article  PubMed  Google Scholar 

  19. Beck R. Abdominal compartment syndrome in children. Pediatr Crit Care Med. 22001:51–6.

    Article  PubMed  CAS  Google Scholar 

  20. Akhobadze GR, Chkhaidze MG, Kanjaradze DV, Tsirkvadze I, Ukleba V. Identification, management and complications of intra-abdominal hypertension and abdominal compartment syndrome in neonatal intensive care unit (a single centre retrospective analysis). Georgian Med News. 2011;192:58–64.

    Google Scholar 

  21. Thabet FC, Bougmiza IM, Chehab MS, Bafaqih HA, AlMohaimeed SA, Malbrain ML. Incidence, risk factors, and prognosis of intra-abdominal hypertension in critically ill children: a prospective epidemiological study. J Intensive Care Med. 2016;31(6):403–8.

    Article  PubMed  Google Scholar 

  22. Pearson EG, Rollins MD, Vogler SA, et al. Decompressive laparotomy for abdominal compartment syndrome in children: before it is too late. J Pediatr Surg. 2010;45(6):1324–9.

    Article  PubMed  Google Scholar 

  23. Ejike JC, Humbert S, Bahjri K, Mathur M. Outcomes of children with abdominal compartment syndrome. Acta Clin Belg Suppl. 2007;1:141–8.

    Article  Google Scholar 

  24. Dmytriiev DV. Intra-abdominal hypertension in children with acute pancreatitis. Acta Clin Belg Suppl. 622007:292–M225.

    Google Scholar 

  25. Krastins J, Straume Z, Auzins J. Intraabdominal pressure in children after cardiothoracic surgery. Acta Chirurgica Latviensis. 2009;9:28–32.

    Article  Google Scholar 

  26. Greenhalgh DG, Warden GD. The importance of intra-abdominal pressure measurements in burned children. J Trauma. 1994;36(5):685–90.

    Article  PubMed  CAS  Google Scholar 

  27. Ejike JC, Mathur M, Moores DC. Abdominal compartment syndrome: focus on the children. Am Surg. 2011;77(Suppl 1):S72–7.

    PubMed  Google Scholar 

  28. Boele van Hensbroek P, Wind J, Dijkgraaf MG, Busch OR, Goslings JC. Temporary closure of the open abdomen: a systematic review on delayed primary fascial closure in patients with an open abdomen. World J Surg. 2009;33(2):199–207.

    Article  PubMed  Google Scholar 

  29. De Waele JJ, Hoste EA, Malbrain ML. Decompressive laparotomy for abdominal compartment syndrome - a critical analysis. Crit Care. 2006;10(2):R51.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rezende-Neto JB, Moore EE, Masuno T, et al. The abdominal compartment syndrome as a second insult during systemic neutrophil priming provokes multiple organ injury. Shock. 2003;20(4):303–8.

    Article  PubMed  Google Scholar 

  31. Rezende-Neto JB, Moore EE, Melo de Andrade MV, et al. Systemic inflammatory response secondary to abdominal compartment syndrome: stage for multiple organ failure. J Trauma. 2002;53(6):1121–8.

    Article  PubMed  Google Scholar 

  32. Oda J, Ivatury RR, Blocher CR, Malhotra AJ, Sugerman HJ. Amplified cytokine response and lung injury by sequential hemorrhagic shock and abdominal compartment syndrome in a laboratory model of ischemia-reperfusion. J Trauma. 2002;52(4):625–31.

    PubMed  CAS  Google Scholar 

  33. Xiao Z, Wilson C, Robertson HL, et al. Inflammatory mediators in intra-abdominal sepsis or injury - a scoping review. Crit Care. 2015;19:373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gross RE. A new method for surgical treatment of large omphaloceles. 19481201 DCOM- 20081016 (0039-6060 (Print)).

    Google Scholar 

  35. Schuster SR. A new method for the staged repair of large omphaloceles. Surg Gynecol Obstet. 1967;125(4):837–50.

    PubMed  CAS  Google Scholar 

  36. Bellon JM, Garcia-Honduvilla N, Carnicer E, Serrano N, Rodriguez M, Bujan J. Temporary closure of the abdomen using a new composite prosthesis (PL-PU99). Am J Surg. 2004;188(3):314–20.

    Article  PubMed  CAS  Google Scholar 

  37. Brock WB, Barker DE, Burns RP. Temporary closure of open abdominal wounds: the vacuum pack. Am Surg. 1995;61(1):30–5.

    PubMed  CAS  Google Scholar 

  38. Cuesta MA, Doblas M, Castaneda L, Bengoechea E. Sequential abdominal reexploration with the zipper technique. World J Surg. 1991;15(1):74–80.

    Article  PubMed  CAS  Google Scholar 

  39. Fansler RF, Taheri P, Cullinane C, Sabates B, Flint LM. Polypropylene mesh closure of the complicated abdominal wound. Am J Surg. 1995;170(1):15–8.

    Article  PubMed  CAS  Google Scholar 

  40. Greene MA, Mullins RJ, Malangoni MA, Feliciano PD, Richardson JD, Polk HC Jr. Laparotomy wound closure with absorbable polyglycolic acid mesh. Surg Gynecol Obstet. 1993;176(3):213–8.

    PubMed  CAS  Google Scholar 

  41. Losanoff JE, Kjossev KT. Mesh-foil laparostomy. J Am Coll Surg. 1997;185(1):89–92.

    Article  PubMed  CAS  Google Scholar 

  42. Quyn AJ, Johnston C, Hall D, et al. The open abdomen and temporary abdominal closure systems--historical evolution and systematic review. Color Dis. 2012;14(8):e429–38.

    Article  CAS  Google Scholar 

  43. Ramirez OM, Ruas E, Dellon AL. “Components separation” method for closure of abdominal-wall defects: an anatomic and clinical study. Plast Reconstr Surg. 1990;86(3):519–26.

    Article  PubMed  CAS  Google Scholar 

  44. Schachtrupp A, Fackeldey V, Klinge U, et al. Temporary closure of the abdominal wall (laparostomy). Hernia. 2002;6(4):155–62.

    Article  PubMed  CAS  Google Scholar 

  45. Tremblay LN, Feliciano DV, Schmidt J, et al. Skin only or silo closure in the critically ill patient with an open abdomen. Am J Surg. 2001;182(6):670–5.

    Article  PubMed  CAS  Google Scholar 

  46. Walsh GL, Chiasson P, Hedderich G, Wexler MJ, Meakins JL. The open abdomen. The Marlex mesh and zipper technique: a method of managing intraperitoneal infection. Surg Clin North Am. 1988;68(1):25–40.

    Article  PubMed  CAS  Google Scholar 

  47. Ross AR, Hall NJ. Outcome reporting in randomized controlled trials and systematic reviews of gastroschisis treatment: a systematic review. J Pediatr Surg. 2016;51(8):1385–9.

    Article  PubMed  Google Scholar 

  48. Joffe A, Anton N, Lequier L, et al. Nutritional support for critically ill children. Cochrane Database Syst Rev. 2016;5:CD005144.

    Google Scholar 

  49. Briassoulis G, Ilia S, Meyer R. Enteral nutrition in PICUs: mission not impossible! Pediatr Crit Care Med. 2016;17(1):85–7.

    Article  PubMed  Google Scholar 

  50. Ackerman AD. Morbidity and mortality conference: making it better. Pediatr Crit Care Med. 2016;17(1):94–5.

    Article  PubMed  Google Scholar 

  51. Kukreti V, Daoud H, Bola SS, Singh RN, Atkison P, Kornecki A. Early critical care course in children after liver transplant. Crit Care Res Prac. 2014;2014:725748.

    Google Scholar 

  52. Yan JQ, Becker T, Peng CH, Li HW, Klempnauer J. Split liver transplantation: a reliable approach to expand donor pool. Hepatobiliary Pancreat Dis Int. 2005;4(3):339–44.

    PubMed  Google Scholar 

  53. Schulze M, Dresske B, Deinzer J, et al. Implications for the usage of the left lateral liver graft for infants </=10 kg, irrespective of a large-for-size situation--are monosegmental grafts redundant? Transpl Int. 2011;24(8):797–804.

    Article  PubMed  Google Scholar 

  54. Shibasaki S, Taniguchi M, Shimamura T, et al. Risk factors for portal vein complications in pediatric living donor liver transplantation. Clin Transpl. 2010;24(4):550–6.

    Article  Google Scholar 

  55. Venick RS, Farmer DG, McDiarmid SV, et al. Predictors of survival following liver transplantation in infants: a single-center analysis of more than 200 cases. Transplantation. 2010;89(5):600–5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bjorck M Fau - Bruhin A, Bruhin A Fau - Cheatham M, Cheatham M Fau - Hinck D, et al. Classification--important step to improve management of patients with an open abdomen. 2009 0511 DCOM- 20091020 (1432-2323 (Electronic)).

    Google Scholar 

  57. Bjorck M Fau - D’Amours SK, D’Amours Sk Fau - Hamilton AER, Hamilton AE. Closure of the open abdomen. 20110928 (1555-9823 (Electronic)).

    Google Scholar 

  58. Steinau G, Kaussen T, Bolten B, et al. Abdominal compartment syndrome in childhood: diagnostics, therapy and survival rate. Pediatr Surg Int. 2011;27(4):399–405.

    Article  PubMed  Google Scholar 

  59. Diaz FJ, Fernandez Sein A, Gotay F. Identification and management of abdominal compartment syndrome in the pediatric intensive care unit. P R Health Sci J. 2006;25(1):17–22.

    PubMed  Google Scholar 

  60. Neville HL, Lally KP, Cox CS Jr. Emergent abdominal decompression with patch abdominoplasty in the pediatric patient. J Pediatr Surg. 2000;35(5):705–8.

    Article  PubMed  CAS  Google Scholar 

  61. Knight H, Petroll WM, Rochester DF. Relationships between abdominal and diaphragmatic volume displacements. J Appl Physiol. 1991;71(2):565–72.

    Article  PubMed  CAS  Google Scholar 

  62. Malbrain M, Nieuwendijk R, Verbrugghe W, et al. Effect of intra-abdominal pressure on pleural and filling pressures. Intensive Care Med. 2004;29(Suppl):S73.

    Google Scholar 

  63. Mutoh T, Lamm WJ, Embree LJ, Hildebrandt J, Albert RK. Abdominal distension alters regional pleural pressures and chest wall mechanics in pigs in vivo. J Appl Physiol. 1991;70(6):2611–8.

    Article  PubMed  CAS  Google Scholar 

  64. Pelosi P, Quintel M, Malbrain ML. Effect of intra-abdominal pressure on respiratory mechanics. Acta Clin Belg. 2007;62(Suppl 1):78–88.

    Article  PubMed  Google Scholar 

  65. Braun J, Schumpelick V. Das ileoanale Reservoir als Rektumersatz bei Colitis ulcerosa. Spatkomplikationen und funktionelle Langzeitergebnisse. Dtsch Med Wochenschr. 1992;117:570–5.

    Article  PubMed  CAS  Google Scholar 

  66. Wauters J, Wilmer A, Valenza F. Abdomino-thoracic transmission during ACS: facts and figures. Acta Clin Belg Suppl. 2007;62:200–5.

    Article  Google Scholar 

  67. Deitch EA. Role of the gut lymphatic system in multiple organ failure. Curr Opin Crit Care. 2001;7(2):92–8.

    Article  PubMed  CAS  Google Scholar 

  68. Malbrain ML, Pelosi P, De Laet I, Lattuada M, Hedenstierna G. Lymphatic drainage between thorax and abdomen: please take good care of this well-performing machinery. Acta Clin Belg. 2007;62(Suppl 1):152–61.

    Article  PubMed  Google Scholar 

  69. Pugin J, Chevrolet JC. The intestine-liver-lung axis in septic syndrome. Schweiz Med Wochenschr. 1991;121(42):1538–44.

    PubMed  CAS  Google Scholar 

  70. Diebel LN, Dulchavsky SA, Brown WJ. Splanchnic ischemia and bacterial translocation in the abdominal compartment syndrome. J Trauma. 1997;43(5):852–5.

    Article  PubMed  CAS  Google Scholar 

  71. Eleftheriadis E, Kotzampassi K, Papanotas K, Heliadis N, Sarris K. Gut ischemia, oxidative stress, and bacterial translocation in elevated abdominal pressure in rats. World J Surg. 1996;20:11–6.

    Article  PubMed  CAS  Google Scholar 

  72. Gautreaux MD, Deitch EA, Berg RD. Bacterial translocation from the gastrointestinal tract to various segments of the mesenteric lymph node complex. Infect Immun. 1994;62(5):2132–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Gong G, Wang P, Ding W, Zhao Y, Li J. The role of oxygen-free radical in the apoptosis of enterocytes and bacterial translocation in abdominal compartment syndrome. Free Radic Res. 2009;43(5):470–7.

    Article  PubMed  CAS  Google Scholar 

  74. Grotz MR, Deitch EA, Ding J, Xu D, Huang Q, Regel G. Intestinal cytokine response after gut ischemia: role of gut barrier failure. Ann Surg. 1999;229(4):478–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Jacobi CA, Ordemann J, Bohm B, et al. Does laparoscopy increase bacteremia and endotoxemia in a peritonitis model? Surg Endosc. 1997;11:235–8.

    Article  PubMed  CAS  Google Scholar 

  76. Kaussen T, Srinivasan PK, Afify M, et al. Influence of two different levels of intra-abdominal hypertension on bacterial translocation in a porcine model. Ann Intensive Care. 2012;2(Suppl 1):S17.

    PubMed  PubMed Central  Google Scholar 

  77. Sugerman HJ, Bloomfield GL, Saggi BW. Multisystem organ failure secondary to increased intraabdominal pressure. Infection. 1999;27(1):61–6.

    Article  PubMed  CAS  Google Scholar 

  78. Sukhotnik I, Bejar J, Srugo I, et al. Adverse effects of increased intra-abdominal pressure on small bowel structure and bacterial translocation in the rat. J Laparoendosc Adv Surg Tech A. 2006;16(4):404–10.

    Article  PubMed  Google Scholar 

  79. Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg. 1996;20(4):411–7.

    Article  PubMed  CAS  Google Scholar 

  80. Berg RD. Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 1995;3(4):149–54.

    Article  PubMed  CAS  Google Scholar 

  81. Deitch EA. Multiple organ failure. Adv Surg. 1993;26:333–56.

    PubMed  CAS  Google Scholar 

  82. Schachtrupp A, Toens C, Afify M, Lawong AG, Schumpelick V. Influence of decompression and reperfusion on organ damage in porcine model of the ACS. Intensive Care Med. 2005;31(Suppl 1):124. Nr 474

    Google Scholar 

  83. Benninger E, Labler L, Seifert B, Trentz O, Menger MD, Meier C. In vitro comparison of intra-abdominal hypertension development after different temporary abdominal closure techniques. J Surg Res. 2008;144(1):102–6.

    Article  PubMed  Google Scholar 

  84. Benninger E, Laschke MW, Cardell M, et al. Intra-abdominal pressure development after different temporary abdominal closure techniques in a porcine model. J Trauma. 2009;66(4):1118–24.

    Article  PubMed  Google Scholar 

  85. Alvarez F. Portal vein complications after pediatric liver transplantation. Curr Gastroenterol Rep. 2012;14(3):270–4.

    Article  PubMed  Google Scholar 

  86. Schachtrupp A, Afify M, Lawong AG, Schwab R, Henzler D, Schumpelick V. Organ impairment results as early as 6 h after the onset of intraabdominal hypertension. Intensive Care Med. 2004;30(Suppl. 1):570.

    Google Scholar 

  87. Schachtrupp A, Töns C, Lorken M, Hoer J, Schumpelick V. Organ damage induced by Pneumoperitoneum : a 24 h study in the pig. Langenbecks Arch Chir. 2000;385:547.

    Google Scholar 

  88. Blobner M, Bogdanski R, Kochs E, Henke J, Findeis A, Jelen-Esselborn S. Effects of intraabdominally insufflated carbon dioxide and elevated intraabdominal pressure on splanchnic circulation: an experimental study in pigs [see comments]. Anesthesiology. 1998;89(2):475–82.

    Article  PubMed  CAS  Google Scholar 

  89. Barnes GE, Laine GA, Giam PY, Smith EE, Granger HJ. Cardiovascular responses to elevation of intra-abdominal hydrostatic pressure. Am J Phys. 1985;248(2 Pt 2):R208–13.

    CAS  Google Scholar 

  90. Schachtrupp A, Graf J, Tons C, Hoer J, Fackeldey V, Schumpelick V. Intravascular volume depletion in a 24-hour porcine model of intra-abdominal hypertension. J Trauma. 2003;55(4):734–40.

    Article  PubMed  Google Scholar 

  91. Schachtrupp A, Toens C, Afify M, Lawong AG, Schumpelick V. Volume resuscitation preserves cardiac output but cannot prevent organ damage in a model of ACS. Intensive Care Med. 2004;30(Suppl. 1):567.

    Google Scholar 

  92. Wauters J, Claus P, Brosens N, et al. Relationship between abdominal pressure, pulmonary compliance, and cardiac preload in a porcine model. Crit Care Res Prac. 2012;2012:763181.

    Google Scholar 

  93. Vivier E, Metton O, Piriou V, et al. Effects of increased intra-abdominal pressure on central circulation. Br J Anaesth. 2006;96(6):701–7.

    Article  PubMed  CAS  Google Scholar 

  94. Cheatham ML, Malbrain ML. Cardiovascular implications of abdominal compartment syndrome. Acta Clin Belg. 2007;62(Suppl 1):98–112.

    Article  PubMed  Google Scholar 

  95. Branche PE, Duperret SL, Sagnard PE, Boulez JL, Petit PL, Viale JP. Left ventricular loading modifications induced by pneumoperitoneum: a time course echocardiographic study. Anesth Analg. 1998;86(3):482–7.

    Article  PubMed  CAS  Google Scholar 

  96. Gentili A, Iannettone CM, Pigna A, Landuzzi V, Lima M, Baroncini S. Cardiocirculatory changes during videolaparoscopy in children: an echocardiographic study. Paediatr Anaesth. 2000;10(4):399–406.

    Article  PubMed  CAS  Google Scholar 

  97. Samel ST, Neufang T, Mueller A, Leister I, Becker H, Post S. A new abdominal cavity chamber to study the impact of increased intra-abdominal pressure on microcirculation of gut mucosa by using video microscopy in rats. Crit Care Med. 2002;30(8):1854–8.

    Article  PubMed  Google Scholar 

  98. Schilling MK, Redaelli C, Krahenbuhl L, Signer C, Buchler MW. Splanchnic microcirculatory changes during CO2 laparoscopy. J Am Coll Surg. 1997;184(4):378–82.

    PubMed  CAS  Google Scholar 

  99. Skoog P, Horer TM, Nilsson KF, Norgren L, Larzon T, Jansson K. Abdominal hypertension and decompression: the effect on peritoneal metabolism in an experimental porcine study. Eur J Vasc Endovasc Surg. 2014;47(4):402–10.

    Article  PubMed  CAS  Google Scholar 

  100. Lichtwarck Aschoff M, Beale R, Pfeiffer UJ. Central venous pressure, pulmonary artery occlusion pressure, intrathoracic blood volume, and right ventricular end-diastolic volume as indicators of cardiac preload. J Crit Care. 1996;11(4):180–8.

    Article  PubMed  CAS  Google Scholar 

  101. Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ. Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med. 1992;18(3):142–7.

    Article  PubMed  CAS  Google Scholar 

  102. Hachenberg T, Ebel C, Czorny M, Thomas H, Wendt M. Intrathoracic and pulmonary blood volume during CO2- pneumoperitoneum in humans. Acta Anaesthesiol Scand. 1998;42(7):794–8.

    Article  PubMed  CAS  Google Scholar 

  103. Malbrain ML, Ameloot K, Gillebert C, Cheatham ML. Cardiopulmonary monitoring in intra-abdominal hypertension. Am Surg. 2011;77(Suppl 1):S23–30.

    PubMed  Google Scholar 

  104. Tomaske M, Knirsch W, Kretschmar O, et al. Cardiac output measurement in children: comparison of Aesculon cardiac output monitor and thermodilution. Br J Anaesth. 2008;100(4):517–20.

    Article  PubMed  CAS  Google Scholar 

  105. Varela JE, Cohn SM, Giannotti GD, et al. Near-infrared spectroscopy reflects changes in mesenteric and systemic perfusion during abdominal compartment syndrome. Surgery. 2001;129(3):363–70.

    Article  PubMed  CAS  Google Scholar 

  106. Widder S, Ranson MK, Zygun D, et al. Use of near-infrared spectroscopy as a physiologic monitor for intra-abdominal hypertension. J Trauma. 2008;64(5):1165–8.

    Article  PubMed  Google Scholar 

  107. Di Nardo M, Cecchetti C, Stoppa F, Pirozzi N, Picardo S. Abdominal compartment syndrome in childhood: the role of near infrared spectroscopy for the early detection of the organ dysfunction. Pediatr Surg Int. 2012;28(1):111–2.

    Article  PubMed  Google Scholar 

  108. WH D, Xiang W, Liu DC, et al. Usefulness of speckle tracking imaging to assess myocardial contractility in intra-abdominal hypertension: study in a mini-pig model. Cell Biochem Biophys. 2012;64(2):123–9.

    Article  CAS  Google Scholar 

  109. Cain BS, Meldrum DR, Dinarello CA, et al. Tumor necrosis factor-alpha and interleukin-1beta synergistically depress human myocardial function. Crit Care Med. 1999;27(7):1309–18.

    Article  PubMed  CAS  Google Scholar 

  110. Muller-Werdan U, Engelmann H, Werdan K. Cardiodepression by tumor necrosis factor-alpha. Eur Cytokine Netw. 1998;9(4):689–91.

    PubMed  CAS  Google Scholar 

  111. Malbrain ML, Vidts W, Ravyts M, De Laet I, De Waele J. Acute intestinal distress syndrome: the importance of intra-abdominal pressure. Minerva Anestesiol. 2008;74(11):657–73.

    PubMed  CAS  Google Scholar 

  112. Mahjoub Y, Plantefeve G. Cardiac ultrasound and abdominal compartment syndrome. Acta Clin Belg. 2007;62(Suppl 1):183–9.

    Article  PubMed  Google Scholar 

  113. Cheatham ML, White MW, Sagraves SG, Johnson JL, Block EF. Abdominal perfusion pressure: a superior parameter in the assessment of intra-abdominal hypertension. J Trauma. 2000;49(4):621–6.

    Article  PubMed  CAS  Google Scholar 

  114. McGuigan RM, Azarow KS. Is splanchnic perfusion pressure more predictive of outcome than intragastric pressure in neonates with gastroschisis? Am J Surg. 2004;187(5):609–11.

    Article  PubMed  Google Scholar 

  115. McGuigan RM, Mullenix PS, Vegunta R, Pearl RH, Sawin R, Azarow KS. Splanchnic perfusion pressure: a better predictor of safe primary closure than intraabdominal pressure in neonatal gastroschisis. J Pediatr Surg. 2006;41(5):901–4.

    Article  PubMed  Google Scholar 

  116. Agusti M, Elizalde JI, Adalia R, Cifuentes A, Fontanals J, Taura P. Dobutamine restores intestinal mucosal blood flow in a porcine model of intra-abdominal hyperpressure. Crit Care Med. 2000;28(2):467–72.

    Article  PubMed  CAS  Google Scholar 

  117. De Keulenaer B, Regli A, De Laet I, Roberts D, Malbrain ML. What’s new in medical management strategies for raised intra-abdominal pressure: evacuating intra-abdominal contents, improving abdominal wall compliance, pharmacotherapy, and continuous negative extra-abdominal pressure. Anaesthesiol Intensive Ther. 2015;47(1):54–62.

    PubMed  Google Scholar 

  118. Bendjelid K. Systemic arterial pressure and fluid responsiveness: not only a swing story. Crit Care Med. 2011;39(6):1579–80.

    Article  PubMed  Google Scholar 

  119. Bailey AG, McNaull PP, Jooste E, Tuchman JB. Perioperative crystalloid and colloid fluid management in children: where are we and how did we get here? Anesth Analg. 2010;110(2):375–90.

    Article  PubMed  Google Scholar 

  120. Steurer MA, Berger TM. Infusion therapy for neonates, infants and children. Anaesthesist. 2011;60(1):10–22.

    Article  PubMed  CAS  Google Scholar 

  121. Malbrain ML, Marik PE, Witters I, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46(5):361–80.

    Article  PubMed  Google Scholar 

  122. Bishara B, Abu-Saleh N, Awad H, et al. Phosphodiesterase 5 inhibition protects against increased intra-abdominal pressure-induced renal dysfunction in experimental congestive heart failure. Eur J Heart Fail. 2012;14(10):1104–11.

    Article  PubMed  CAS  Google Scholar 

  123. Hedenstierna G, Larsson A. Influence of abdominal pressure on respiratory and abdominal organ function. Curr Opin Crit Care. 2012;18(1):80–5.

    Article  PubMed  Google Scholar 

  124. Villa G, Samoni S, De Rosa S, Ronco C. The pathophysiological hypothesis of kidney damage during intra-abdominal hypertension. Front Physiol. 2016;7:55.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Harman PK, Kron IL, McLachlan HD, Freedlender AE, Nolan SP. Elevated intra-abdominal pressure and renal function. Ann Surg. 1982;196:594–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. De Laet I, Malbrain ML, Jadoul JL, Rogiers P, Sugrue M. Renal implications of increased intra-abdominal pressure: are the kidneys the canary for abdominal hypertension? Acta Clin Belg. 2007;62(Suppl 1):119–30.

    Article  PubMed  Google Scholar 

  127. Lingegowda V, Ejaz AA, Sood P. Normotensive ischemic acute kidney injury as a manifestation of intra-abdominal hypertension. Int Urol Nephrol. 2009;41(4):1043–5.

    Article  PubMed  CAS  Google Scholar 

  128. Wauters J, Claus P, Brosens N, McLaughlin M, Malbrain M, Wilmer A. Pathophysiology of renal hemodynamics and renal cortical microcirculation in a porcine model of elevated intra-abdominal pressure. J Trauma. 2009;66(3):713–9.

    Article  PubMed  CAS  Google Scholar 

  129. Wiebe S, Kellenberger CJ, Khoury A, Miller SF. Early Doppler changes in a renal transplant patient secondary to abdominal compartment syndrome. Pediatr Radiol. 2004;34(5):432–4.

    Article  PubMed  Google Scholar 

  130. Sui F, Zheng Y, Li WX, Zhou JL. Renal circulation and microcirculation during intra-abdominal hypertension in a porcine model. Eur Rev Med Pharmacol Sci. 2016;20(3):452–61.

    PubMed  CAS  Google Scholar 

  131. Smith LS, Zimmerman JJ, Martin TR. Mechanisms of acute respiratory distress syndrome in children and adults: a review and suggestions for future research. Pediatr Crit Care Med. 2013;14(6):631–43.

    Article  PubMed  Google Scholar 

  132. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.

    Google Scholar 

  133. De Keulenaer BL, De Waele JJ, Powell B, Malbrain ML. What is normal intra-abdominal pressure and how is it affected by positioning, body mass and positive end-expiratory pressure? Intensive Care Med. 2009;35(6):969–76.

    Article  PubMed  Google Scholar 

  134. Cortes-Puentes GA, Cortes-Puentes LA, Adams AB, Anderson CP, Marini JJ, Dries DJ. Experimental intra-abdominal hypertension influences airway pressure limits for lung protective mechanical ventilation. J Trauma Acute Care Surg. 2013;74(6):1468–73.

    Article  PubMed  Google Scholar 

  135. Larsson A. Clinical significance of elevated intraabdominal pressure during common conditions and procedures. Acta Clin Belg. 2007;62(Suppl 1):74–7.

    Article  PubMed  Google Scholar 

  136. Malbrain ML, De Laet IE, De Waele JJ, Kirkpatrick AW. Intra-abdominal hypertension: definitions, monitoring, interpretation and management. Best Pract Res Clin Anaesthesiol. 2013;27(2):249–70.

    Article  PubMed  Google Scholar 

  137. Regli A, Mahendran R, Fysh ET, et al. Matching positive end-expiratory pressure to intra-abdominal pressure improves oxygenation in a porcine sick lung model of intra-abdominal hypertension. Crit Care. 2012;16(5):R208.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Runck H, Schumann S, Tacke S, Haberstroh J, Guttmann J. Effects of intra-abdominal pressure on respiratory system mechanics in mechanically ventilated rats. Respir Physiol Neurobiol. 2012;180(2–3):204–10.

    Article  PubMed  Google Scholar 

  139. Haddam M, Zieleskiewicz L, Perbet S, et al. Lung ultrasonography for assessment of oxygenation response to prone position ventilation in ARDS. Intensive Care Med. 2016;42(10):1546–56.

    Article  PubMed  Google Scholar 

  140. Robotham JL, Takata M. Mechanical abdomino/heart/lung interaction. J Sleep Res. 1995;4(S1):50–2.

    Article  PubMed  CAS  Google Scholar 

  141. Rodriguez-Moya VS, Gallo-Borrero CM, Santos-Areas D, Prince-Martinez IA, Diaz-Casanas E, Lopez-Herce Cid J. Exogenous surfactant and alveolar recruitment in the treatment of the acute respiratory distress syndrome. Clin Respir J. 2016, doi:10.1111/crj.12462.

    Article  PubMed  CAS  Google Scholar 

  142. Rotta AT, Steinhorn DM. Is permissive hypercapnia a beneficial strategy for pediatric acute lung injury? Respir Care Clin N Am. 2006;12(3):371–87.

    PubMed  Google Scholar 

  143. Chao CS, Chang YP, Chin HK, Chin J. A patient with abdominal compartment syndrome and perforated transverse colon successfully managed with ECMO. Ann Acad Med Singap. 2011;40(12):554–5.

    PubMed  Google Scholar 

  144. Datin-Dorriere V, Walter-Nicolet E, Rousseau V, et al. Experience in the management of eighty-two newborns with congenital diaphragmatic hernia treated with high-frequency oscillatory ventilation and delayed surgery without the use of extracorporeal membrane oxygenation. J Intensive Care Med. 2008;23(2):128–35.

    Article  PubMed  Google Scholar 

  145. Wieczorek B, Burke C, Al-Harbi A, Kudchadkar SR. Early mobilization in the pediatric intensive care unit: a systematic review. J Pediatr Intensive Care. 2015;2015:129–70.

    PubMed  Google Scholar 

  146. Playfor S, Jenkins I, Boyles C, et al. Consensus guidelines on sedation and analgesia in critically ill children. Intensive Care Med. 2006;32(8):1125–36.

    Article  PubMed  CAS  Google Scholar 

  147. Eifinger F, Hunseler C, Roth B, et al. Observations on the effects of inhaled isoflurane in long-term sedation of critically ill children using a modified AnaConDa(c)-system. Klin Padiatr. 2013;225(4):206–11.

    Article  PubMed  CAS  Google Scholar 

  148. Sackey PV, Martling CR, Radell PJ. Three cases of PICU sedation with isoflurane delivered by the ‘AnaConDa’. Paediatr Anaesth. 2005;15(10):879–85.

    Article  PubMed  Google Scholar 

  149. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Khlevner J, Antino J, Panesar R, Chawla A. Establishing early enteral nutrition with the use of self-advancing postpyloric feeding tube in critically ill children. J Parenter Enter Nutr. 2012;36(6):750–2.

    Article  Google Scholar 

  151. Braun J, Bein T, Wiese CH, Graf BM, Zausig YA. Enteral feeding tubes for critically ill patients. Anaesthesist. 2011;60(4):352–65.

    Article  PubMed  CAS  Google Scholar 

  152. Cothren CC, Moore EE, Ciesla DJ, et al. Postinjury abdominal compartment syndrome does not preclude early enteral feeding after definitive closure. Am J Surg. 2004;188(6):653–8.

    Article  PubMed  Google Scholar 

  153. Reynolds JV, O’Farrelly C, Feighery C, et al. Impaired gut barrier function in malnourished patients. Br J Surg. 1996;83(9):1288–91.

    Article  PubMed  CAS  Google Scholar 

  154. Ng E, Shah VS. Erythromycin for the prevention and treatment of feeding intolerance in preterm infants. Cochrane Database Syst Rev. 2008;(3):CD001815.

    Google Scholar 

  155. Stanger JD, Oliveira C, Blackmore C, Avitzur Y, Wales PW. The impact of multi-disciplinary intestinal rehabilitation programs on the outcome of pediatric patients with intestinal failure: a systematic review and meta-analysis. J Pediatr Surg. 2013;48(5):983–92.

    Article  PubMed  Google Scholar 

  156. van der Linden J, Casimir Ahn H. When do cerebral emboli appear during open heart operations? A transcranial Doppler study. Ann Thorac Surg. 1991;51:237–41.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Kaussen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaussen, T. (2018). Management of the Open Abdomen in PICU. In: Coccolini, F., Ivatury, R., Sugrue, M., Ansaloni, L. (eds) Open Abdomen. Hot Topics in Acute Care Surgery and Trauma. Springer, Cham. https://doi.org/10.1007/978-3-319-48072-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48072-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48071-8

  • Online ISBN: 978-3-319-48072-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics