Skip to main content

T-Lymphocytes

  • Chapter
  • First Online:
  • 989 Accesses

Abstract

T-lymphocytes or simply called as T-cells originate in bone marrow and mature in thymus; they are the main cells involved in cell-mediated immunity. Typically identified by the presence of T-cell receptors (TCR), T-cells are broadly classified into CD4+ T-cells and CD8+ T-cells, which upon appropriate activation by DCs differentiate into respective effector cells and initiate the immune response. The current chapter presents the details of T-cells including the different subtypes, functions and role in tumor microenvironment. The chapter first gives a brief history of T-cell discovery, lists the different components of TCR and describes the rearrangements of the V, D, J segments of the genes that are responsible for the huge diversity of receptor subunits. Next the development of naïve T-cells in thymus and the different subtypes of T-cells are described. After discussing the activation of T-cells and the various markers that help in identification of T-cells, differentiation of T-cells is described; different types of effector T-cells such as Th1 cells, Th2 cells, Th17 cells, Tregs and CTLs are discussed along with details of their origin, secretions, functions and role in tumor microenvironment. Towards the end of the chapter, other types of T-cells, such as NKT cells that are phenotypically similar to conventional T-cells but play a role in innate immune response instead of adaptive response and γδ T-cells, which express γδ-TCR instead of the commonly seen αβ-TCR but function similar to conventional T-cells, are described along with details of their origin, secretions, functions and role in tumor microenvironment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Broere, F., Apasov, S. G., Sitkovsky, M. V., & van Eden, W. (2011). T cell subsets and T cell-mediated immunity. In F. P. Nijkamp & M. J. Parnham (Eds.), Principles of immunopharmacology (3rd revised and extended ed.). Basel: Springer.

    Google Scholar 

  2. Luckheeram, R. V., Zhou, R., Verma, A. D., & Xia, B. (2012). CD4(+)T cells: Differentiation and functions. Clinical and Developmental Immunology, 2012, 925135. doi:10.1155/2012/925135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Vantourout, P., & Hayday, A. (2013). Six-of-the-best: Unique contributions of gammadelta T cells to immunology. Nature Reviews Immunology, 13(2), 88–100, doi:10.1038/nri3384 (nri3384 [pii]).

  4. Murphy, J. B. (1914). Factors of resistance to heteroplastic tissue-grafting: studies in tissue specificity. Iii. The Journal of Experimental Medicine, 19(5), 513–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Murphy, J. B. (1914). Studies in tissue specificity: Ii. The ultimate fate of mammalian tissue implanted in the chick embryo. The Journal of Experimental Medicine, 19(2), 181–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rous, P., & Murphy, J. B. (1914). On immunity to transplantable chicken tumors. The Journal of Experimental Medicine, 20(4), 419–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Silverstein, A. M. (2001). The lymphocyte in immunology: From James B. Murphy to James L. Gowans. Nature Immunology, 2(7), 569–571. doi:10.1038/8970689706 ([pii]).

    Article  CAS  PubMed  Google Scholar 

  8. Gowans, J. L., & Knight, E. J. (1964). The route of re-circulation of lymphocytes in the rat. Proceedings of the Royal Society of London. Series B: Biological Sciences, 159, 257–282.

    Article  CAS  Google Scholar 

  9. Miller, J. F. (1961). Immunological function of the thymus. Lancet, 2(7205), 748–749. (S0140-6736(61)90693-6 [pii]).

    Article  CAS  PubMed  Google Scholar 

  10. Ribatti, D., Crivellato, E., & Vacca, A. (2006). Miller’s seminal studies on the role of thymus in immunity. Clinical and Experimental Immunology, 144(3), 371–375. doi:10.1111/j.1365-2249.2006.03060.x (CEI3060 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Masopust, D., Vezys, V., Wherry, E. J., & Ahmed, R. (2007). A brief history of CD8 T cells. European Journal of Immunology, 37(Suppl 1), S103–S110. doi:10.1002/eji.200737584

    Article  CAS  PubMed  Google Scholar 

  12. Claman, H. N., Chaperon, E. A., & Triplett, R. F. (1966). Thymus-marrow cell combinations. Synergism in antibody production. Proceedings of the Society for Experimental Biology and Medicine, 122(4), 1167–1171.

    Article  CAS  PubMed  Google Scholar 

  13. Crotty, S. (2015). A brief history of T cell help to B cells. Nature Reviews Immunology, 15(3), 185–189. doi:10.1038/nri3803 (nri3803 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller, J. F., & Mitchell, G. F. (1968). Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. Journal of Experimental Medicine, 128(4), 801–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mitchell, G. F., & Miller, J. F. (1968). Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. Journal of Experimental Medicine, 128(4), 821–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nossal, G. J., Cunningham, A., Mitchell, G. F., & Miller, J. F. (1968). Cell to cell interaction in the immune response. 3. Chromosomal marker analysis of single antibody-forming cells in reconstituted, irradiated, or thymectomized mice. Journal of Experimental Medicine, 128(4), 839–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steinman, R. M., & Cohn, Z. A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. Journal of Experimental Medicine, 137(5), 1142–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shiku, H., Kisielow, P., Bean, M. A., Takahashi, T., Boyse, E. A., Oettgen, H. F., et al. (1975). Expression of T-cell differentiation antigens on effector cells in cell-mediated cytotoxicity in vitro. Evidence for functional heterogeneity related to the surface phenotype of T cells. Journal of Experimental Medicine, 141(1), 227–241.

    Article  CAS  PubMed  Google Scholar 

  19. Kisielow, P., Hirst, J. A., Shiku, H., Beverley, P. C., Hoffman, M. K., Boyse, E. A., et al. (1975). Ly antigens as markers for functionally distinct subpopulations of thymus-derived lymphocytes of the mouse. Nature, 253(5488), 219–220.

    Article  CAS  PubMed  Google Scholar 

  20. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., & Coffman, R. L. (1986). Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. The Journal of Immunology, 136(7), 2348–2357.

    CAS  PubMed  Google Scholar 

  21. Wucherpfennig, K. W., Gagnon, E., Call, M. J., Huseby, E. S., & Call, M. E. (2010). Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harbor Perspectives in Biology, 2(4), a005140. doi:10.1101/cshperspect.a005140 (cshperspect.a005140 [pii]).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gellert, M. (2002). V(D)J recombination: RAG proteins, repair factors, and regulation. The Annual Review of Biochemistry, 71, 101–132, doi:10.1146/annurev.biochem.71.090501.150203 (090501.150203 [pii]).

  23. Parkin, J., & Cohen, B. (2001). An overview of the immune system. Lancet, 357(9270), 1777–1789. doi:10.1016/S0140-6736(00)04904-7 (S0140-6736(00)04904-7 [pii]).

    Article  CAS  PubMed  Google Scholar 

  24. Chaplin, D. D. (2010). Overview of the immune response. The Journal of Allergy and Clinical Immunology, 125(2 Suppl 2), S3–23. doi:10.1016/j.jaci.2009.12.980 (S0091-6749(09)02837-1 [pii]).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Miller, J. F. (2002). The discovery of thymus function and of thymus-derived lymphocytes. Immunological Reviews, 185, 7–14 (imr18502 [pii]).

    Article  CAS  PubMed  Google Scholar 

  26. Mathis, D., & Benoist, C. (2009). Aire. The Annual Review of Immunology, 27, 287–312. doi:10.1146/annurev.immunol.25.022106.141532

    Article  CAS  PubMed  Google Scholar 

  27. Ishikawa, H., Naito, T., Iwanaga, T., Takahashi-Iwanaga, H., Suematsu, M., Hibi, T., et al. (2007). Curriculum vitae of intestinal intraepithelial T cells: Their developmental and behavioral characteristics. Immunological Reviews, 215, 154–165. doi:10.1111/j.1600-065X.2006.00473.x (IMR473 [pii]).

    Article  CAS  PubMed  Google Scholar 

  28. von Boehmer, H., Kisielow, P., Kishi, H., Scott, B., Borgulya, P., & Teh, H. S. (1989). The expression of CD4 and CD8 accessory molecules on mature T cells is not random but correlates with the specificity of the alpha beta receptor for antigen. Immunological Reviews, 109, 143–151.

    Article  Google Scholar 

  29. Sakaguchi, S., Ono, M., Setoguchi, R., Yagi, H., Hori, S., Fehervari, Z., et al. (2006). Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunological Reviews, 212, 8–27. doi:10.1111/j.0105-2896.2006.00427.x (IMR427 [pii]).

    Article  CAS  PubMed  Google Scholar 

  30. Sakaguchi, S., Yamaguchi, T., Nomura, T., & Ono, M. (2008). Regulatory T cells and immune tolerance. Cell, 133(5), 775–787. doi:10.1016/j.cell.2008.05.009 (S0092-8674(08)00624-7 [pii]).

    Article  CAS  PubMed  Google Scholar 

  31. Nakamura, K., Kitani, A., & Strober, W. (2001). Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. Journal of Experimental Medicine, 194(5), 629–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Curotto de Lafaille, M. A., & Lafaille, J. J. (2009). Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity, 30(5), 626–635. doi:10.1016/j.immuni.2009.05.002 (S1074-7613(09)00199-X [pii]).

    Article  CAS  PubMed  Google Scholar 

  33. Russell, T. B., & Kurre, P. (2010). Double-negative T cells are non-ALPS-specific markers of immune dysregulation found in patients with aplastic anemia. Blood, 116(23), 5072–5073. doi:10.1182/blood-2010-09-306910 (116/23/5072 [pii]).

    Article  CAS  PubMed  Google Scholar 

  34. D’Acquisto, F., & Crompton, T. (2011). CD3+CD4−CD8− (double negative) T cells: saviours or villains of the immune response? Biochemical Pharmacology, 82(4), 333–340. doi:10.1016/j.bcp.2011.05.019 (S0006-2952(11)00332-7 [pii]).

    Article  PubMed  CAS  Google Scholar 

  35. Juvet, S. C., & Zhang, L. (2012). Double negative regulatory T cells in transplantation and autoimmunity: Recent progress and future directions. Journal of Molecular Cell Biology, 4(1), 48–58. doi:10.1093/jmcb/mjr043 (mjr043 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martina, M. N., Noel, S., Saxena, A., Rabb, H., & Hamad, A. R. (2015). Double negative (DN) alphabeta T cells: Misperception and overdue recognition. Immunology and Cell Biology, 93(3), 305–310. doi:10.1038/icb.2014.99 (icb201499 [pii]).

    Article  CAS  PubMed  Google Scholar 

  37. Grant, E. P., Beckman, E. M., Behar, S. M., Degano, M., Frederique, D., Besra, G. S., et al. (2002). Fine specificity of TCR complementarity-determining region residues and lipid antigen hydrophilic moieties in the recognition of a CD1-lipid complex. The Journal of Immunology, 168(8), 3933–3940.

    Article  CAS  PubMed  Google Scholar 

  38. Lawrence, M. B., Berg, E. L., Butcher, E. C., & Springer, T. A. (1995). Rolling of lymphocytes and neutrophils on peripheral node addressin and subsequent arrest on ICAM-1 in shear flow. European Journal of Immunology, 25(4), 1025–1031. doi:10.1002/eji.1830250425

    Article  CAS  PubMed  Google Scholar 

  39. Lechleitner, S., Kunstfeld, R., Messeritsch-Fanta, C., Wolff, K., & Petzelbauer, P. (1999). Peripheral lymph node addressins are expressed on skin endothelial cells. J Invest Dermatol, 113(3), 410–414. doi:10.1046/j.1523-1747.1999.00696.x (S0022-202X(15)40602-5 [pii]).

    Article  CAS  PubMed  Google Scholar 

  40. Smith-Garvin, J. E., Koretzky, G. A., & Jordan, M. S. (2009). T cell activation. The Annual Review of Immunology, 27, 591–619, doi:10.1146/annurev.immunol.021908.132706; 10.1146/annurev.immunol.021908.132706 ([pii]).

    Google Scholar 

  41. Unutmaz, D. (2009). RORC2: The master of human Th17 cell programming. European Journal of Immunology, 39(6), 1452–1455. doi:10.1002/eji.200939540

    Article  CAS  PubMed  Google Scholar 

  42. Zhu, J., & Paul, W. E. (2008). CD4 T cells: Fates, functions, and faults. Blood, 112(5), 1557–1569. doi:10.1182/blood-2008-05-078154 (112/5/1557 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, J., Yamane, H., & Paul, W. E. (2010). Differentiation of effector CD4 T cell populations (*). Annual Review of Immunology, 28, 445–489. doi:10.1146/annurev-immunol-030409-101212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Travers, P., Walport, M., Shlomchik, M., & Janeway, C. A., Jr. (2001). T cell-mediated cytotoxicity. In Immunobiology: The immune system in health and disease (5th ed.). London: Taylor & Francis, Inc.

    Google Scholar 

  45. Schroder, K., Hertzog, P. J., Ravasi, T., & Hume, D. A. (2004). Interferon-gamma: An overview of signals, mechanisms and functions. The Journal of Leukocyte Biology, 75(2), 163–189. doi:10.1189/jlb.0603252 (jlb.0603252 [pii]).

  46. Schoenborn, J. R., & Wilson, C. B. (2007). Regulation of interferon-gamma during innate and adaptive immune responses. Advances in Immunology, 96, 41–101. doi:10.1016/S0065-2776(07)96002-2 (S0065-2776(07)96002-2 [pii]).

    Article  CAS  PubMed  Google Scholar 

  47. Upadhyay, V., & Fu, Y. X. (2013). Lymphotoxin signalling in immune homeostasis and the control of microorganisms. Nature Reviews Immunology, 13(4), 270–279. doi:10.1038/nri3406 (nri3406 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suen, W. E., Bergman, C. M., Hjelmstrom, P., & Ruddle, N. H. (1997). A critical role for lymphotoxin in experimental allergic encephalomyelitis. Journal of Experimental Medicine, 186(8), 1233–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Benczik, M., & Gaffen, S. L. (2004). The interleukin (IL)-2 family cytokines: survival and proliferation signaling pathways in T lymphocytes. Immunological Investigations, 33(2), 109–142.

    Article  CAS  PubMed  Google Scholar 

  50. Gaffen, S. L., & Liu, K. D. (2004). Overview of interleukin-2 function, production and clinical applications. Cytokine, 28(3), 109–123. doi:10.1016/j.cyto.2004.06.010 (S1043-4666(04)00220-0 [pii]).

    Article  CAS  PubMed  Google Scholar 

  51. Liao, W., Lin, J. X., & Leonard, W. J. (2011). IL-2 family cytokines: New insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Current Opinion in Immunology, 23(5), 598–604. doi:10.1016/j.coi.2011.08.003 (S0952-7915(11)00106-3 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liao, W., Lin, J. X., & Leonard, W. J. (2013). Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity, 38(1), 13–25. doi:10.1016/j.immuni.2013.01.004 (S1074-7613(13)00011-3 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lai, Y., Jeng, C., & Chen, S. (2011). The roles of CD4+ T cells in tumor immunity. ISRN Immunology, 2011, 6. doi:10.5402/2011/497397

    Article  CAS  Google Scholar 

  54. Keene, J. A., & Forman, J. (1982). Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. Journal of Experimental Medicine, 155(3), 768–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cassell, D., & Forman, J. (1988). Linked recognition of helper and cytotoxic antigenic determinants for the generation of cytotoxic T lymphocytes. Annals of the New York Academy of Sciences, 532, 51–60.

    Article  CAS  PubMed  Google Scholar 

  56. Bourgeois, C., Rocha, B., & Tanchot, C. (2002). A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science, 297(5589), 2060–2063. doi:10.1126/science.1072615297/5589/2060 ([pii]).

    Article  CAS  PubMed  Google Scholar 

  57. Ridge, J. P., Di Rosa, F., & Matzinger, P. (1998). A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature, 393(6684), 474–478. doi:10.1038/30989

    Article  CAS  PubMed  Google Scholar 

  58. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R., & Melief, C. J. (1998). T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature, 393(6684), 480–483. doi:10.1038/31002

    Article  CAS  PubMed  Google Scholar 

  59. Bennett, S. R., Carbone, F. R., Karamalis, F., Flavell, R. A., Miller, J. F., & Heath, W. R. (1998). Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature, 393(6684), 478–480. doi:10.1038/30996

    Article  CAS  PubMed  Google Scholar 

  60. Lai, Y. P., Lin, C. C., Liao, W. J., Tang, C. Y., & Chen, S. C. (2009). CD4+ T cell-derived IL-2 signals during early priming advances primary CD8+ T cell responses. PLoS ONE, 4(11), e7766. doi:10.1371/journal.pone.0007766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Sun, J. C., & Bevan, M. J. (2003). Defective CD8 T cell memory following acute infection without CD4 T cell help. Science, 300(5617), 339–342. doi:10.1126/science.1083317300/5617/339 ([pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shedlock, D. J., & Shen, H. (2003). Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science, 300(5617), 337–339. doi:10.1126/science.1082305300/5617/337 ([pii]).

    Article  CAS  PubMed  Google Scholar 

  63. Bevan, M. J. (2004). Helping the CD8(+) T-cell response. Nature Reviews Immunology, 4(8), 595–602. doi:10.1038/nri1413nri1413 ([pii]).

    Article  CAS  PubMed  Google Scholar 

  64. Laidlaw, B. J., Craft, J. E., & Kaech, S. M. (2016). The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nature Reviews Immunology, 16(2), 102–111. doi:10.1038/nri.2015.10 (nri.2015.10 [pii]).

    Article  CAS  PubMed  Google Scholar 

  65. Nakanishi, Y., Lu, B., Gerard, C., & Iwasaki, A. (2009). CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature, 462(7272), 510–513. doi:10.1038/nature08511 (nature08511 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Assudani, D. P., Horton, R. B., Mathieu, M. G., McArdle, S. E., & Rees, R. C. (2007). The role of CD4+ T cell help in cancer immunity and the formulation of novel cancer vaccines. Cancer Immunology, Immunotherapy, 56(1), 70–80. doi:10.1007/s00262-006-0154-6

    Article  PubMed  Google Scholar 

  67. Quezada, S. A., Simpson, T. R., Peggs, K. S., Merghoub, T., Vider, J., Fan, X., et al. (2010). Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. Journal of Experimental Medicine, 207(3), 637–650. doi:10.1084/jem.20091918 (jem.20091918 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zanetti, M. (2015). Tapping CD4 T cells for cancer immunotherapy: The choice of personalized genomics. J Immunol, 194(5), 2049–2056. doi:10.4049/jimmunol.1402669 (194/5/2049 [pii]).

    Article  CAS  PubMed  Google Scholar 

  69. Luzina, I. G., Keegan, A. D., Heller, N. M., Rook, G. A., Shea-Donohue, T., & Atamas, S. P. (2012). Regulation of inflammation by interleukin-4: A review of “alternatives”. Journal of Leukocyte Biology, 92(4), 753–764. doi:10.1189/jlb.0412214 (jlb.0412214 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Silva-Filho, J. L., Caruso-Neves, C., & Pinheiro, A. A. S. (2014). IL-4: An important cytokine in determining the fate of T cells. [Review]. Biophysical Reviews, 6(1), 111–118.

    Article  CAS  Google Scholar 

  71. Kouro, T., & Takatsu, K. (2009). IL-5- and eosinophil-mediated inflammation: From discovery to therapy. International Immunology, 21(12), 1303–1309. doi:10.1093/intimm/dxp102 (dxp102 [pii]).

    Article  CAS  PubMed  Google Scholar 

  72. Hauber, H. P., Bergeron, C., & Hamid, Q. (2004). IL-9 in allergic inflammation. International Archives of Allergy and Immunology, 134(1), 79–87. doi:10.1159/00007838478384 ([pii]).

    Article  CAS  PubMed  Google Scholar 

  73. Goswami, R., & Kaplan, M. H. (2011). A brief history of IL-9. J Immunol, 186(6), 3283–3288. doi:10.4049/jimmunol.1003049 (186/6/3283 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wynn, T. A. (2003). IL-13 effector functions. The Annual Review of Immunology, 21, 425–456, doi:10.1146/annurev.immunol.21.120601.141142120601.141142 ([pii]).

  75. Couper, K. N., Blount, D. G., & Riley, E. M. (2008). IL-10: the master regulator of immunity to infection. The Journal of Immunology, 180(9), 5771–5777 (180/9/5771 [pii]).

    Article  CAS  PubMed  Google Scholar 

  76. Barlow, J. L., & McKenzie, A. N. (2009). IL-25: A key requirement for the regulation of type-2 immunity. BioFactors, 35(2), 178–182. doi:10.1002/biof.24

    Article  CAS  PubMed  Google Scholar 

  77. Saadoun, D., Terrier, B., & Cacoub, P. (2011). Interleukin-25: Key regulator of inflammatory and autoimmune diseases. Journal of Current Pharmaceutical Design, 17(34), 3781–3785 (BSP/CPD/E-Pub/000752 [pii]).

    Google Scholar 

  78. Zaiss, D. M., Gause, W. C., Osborne, L. C., & Artis, D. (2015). Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity, 42(2), 216–226. doi:10.1016/j.immuni.2015.01.020 (S1074-7613(15)00046-1 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim, H. J., & Cantor, H. (2014). CD4 T-cell subsets and tumor immunity: The helpful and the not-so-helpful. Cancer Immunology Research, 2(2), 91–98. doi:10.1158/2326-6066.CIR-13-0216 (2/2/91 [pii]).

    Article  CAS  PubMed  Google Scholar 

  80. Lanca, T., & Silva-Santos, B. (2012). The split nature of tumor-infiltrating leukocytes: Implications for cancer surveillance and immunotherapy. Oncoimmunology, 1(5), 717–725, doi:10.4161/onci.200682012ONCOIMM0079R ([pii]).

  81. Tepper, R. I., Pattengale, P. K., & Leder, P. (1989). Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell, 57(3), 503–512 (0092-8674(89)90925-2 [pii]).

    Article  CAS  PubMed  Google Scholar 

  82. Mattes, J., Hulett, M., Xie, W., Hogan, S., Rothenberg, M. E., Foster, P., et al. (2003). Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: An eotaxin and STAT6-dependent process. Journal of Experimental Medicine, 197(3), 387–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ochi, A., Nguyen, A. H., Bedrosian, A. S., Mushlin, H. M., Zarbakhsh, S., Barilla, R., et al. (2012). MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. Journal of Experimental Medicine, 209(9), 1671–1687. doi:10.1084/jem.20111706 (jem.20111706 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. De Monte, L., Reni, M., Tassi, E., Clavenna, D., Papa, I., Recalde, H., et al. (2011). Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. Journal of Experimental Medicine, 208(3), 469–478. doi:10.1084/jem.20101876 (jem.20101876 [pii]).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Tatsumi, T., Kierstead, L. S., Ranieri, E., Gesualdo, L., Schena, F. P., Finke, J. H., et al. (2002). Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. Journal of Experimental Medicine, 196(5), 619–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Biswas, S. K., & Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology, 11(10), 889–896. doi:10.1038/ni.1937 (ni.1937 [pii]).

    Article  CAS  PubMed  Google Scholar 

  87. Protti, M. P., De Monte, L., & Di Lullo, G. (2014). Tumor antigen-specific CD4+ T cells in cancer immunity: from antigen identification to tumor prognosis and development of therapeutic strategies. Tissue Antigens, 83(4), 237–246. doi:10.1111/tan.12329

    Article  CAS  PubMed  Google Scholar 

  88. Korn, T., Bettelli, E., Oukka, M., & Kuchroo, V. K. (2009). IL-17 and Th17 Cells. The Annual Review of Immunology, 27, 485–517, doi:10.1146/annurev.immunol.021908.132710; 10.1146/annurev.immunol.021908.132710 ([pii]).

    Google Scholar 

  89. Burkett, P. R., Meyer zu Horste, G., & Kuchroo, V. K. (2015). Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. The Journal of Clinical Investigation, 125(6), 2211–2219. doi:10.1172/JCI78085 (78085 [pii]).

  90. Spolski, R., & Leonard, W. J. (2014). Interleukin-21: A double-edged sword with therapeutic potential. Nature Reviews Drug Discovery, 13(5), 379–395. doi:10.1038/nrd4296. (nrd4296 [pii]).

    Article  CAS  PubMed  Google Scholar 

  91. Croce, M., Rigo, V., & Ferrini, S. (2015). IL-21: A pleiotropic cytokine with potential applications in oncology. Journal of Immunology Research, 2015, 696578. doi:10.1155/2015/696578

    Article  PubMed  PubMed Central  Google Scholar 

  92. Dudakov, J. A., Hanash, A. M., & van den Brink, M. R. (2015). Interleukin-22: Immunobiology and pathology. Annual Review of Immunology, 33, 747–785. doi:10.1146/annurev-immunol-032414-112123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zou, W., & Restifo, N. P. (2010). T(H)17 cells in tumour immunity and immunotherapy. Nature Reviews Immunology, 10(4), 248–256. doi:10.1038/nri2742 (nri2742 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Martin, F., Apetoh, L., & Ghiringhelli, F. (2012). Controversies on the role of Th17 in cancer: A TGF-beta-dependent immunosuppressive activity? Trends in Molecular Medicine, 18(12), 742–749. doi:10.1016/j.molmed.2012.09.007 (S1471-4914(12)00184-0 [pii]).

    Article  CAS  PubMed  Google Scholar 

  95. Bailey, S. R., Nelson, M. H., Himes, R. A., Li, Z., Mehrotra, S., & Paulos, C. M. (2014). Th17 cells in cancer: The ultimate identity crisis. Frontiers in Immunology, 5, 276. doi:10.3389/fimmu.2014.00276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sakaguchi, S. (2008). Regulatory T cells in the past and for the future. European Journal of Immunology, 38(4), 901–937. doi:10.1002/eji.200890012

    Article  CAS  PubMed  Google Scholar 

  97. Beyer, M., & Schultze, J. L. (2006). Regulatory T cells in cancer. Blood, 108(3), 804–811. doi:10.1182/blood-2006-02-002774 (108/3/804 [pii]).

    Article  CAS  PubMed  Google Scholar 

  98. Adeegbe, D. O., & Nishikawa, H. (2013). Natural and induced T regulatory cells in cancer. Frontiers in Immunology, 4, 190. doi:10.3389/fimmu.2013.00190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. whiteside, T. L. (2015). The role of regulatory T cells in cancer immunology. ImmunoTargets and Therapy, 2015(4), 159–171.

    Google Scholar 

  100. Redjimi, N., Raffin, C., Raimbaud, I., Pignon, P., Matsuzaki, J., Odunsi, K., et al. (2012). CXCR3+ T regulatory cells selectively accumulate in human ovarian carcinomas to limit type I immunity. Cancer Research, 72(17), 4351–4360. doi:10.1158/0008-5472.CAN-12-0579 (0008-5472.CAN-12-0579 [pii]).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, J., Zhang, N., Li, Q., Zhang, W., Ke, F., Leng, Q., et al. (2011). Tumor-associated macrophages recruit CCR6+ regulatory T cells and promote the development of colorectal cancer via enhancing CCL20 production in mice. PLoS ONE, 6(4), e19495. doi:10.1371/journal.pone.0019495PONE-D-10-04249 ([pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schlecker, E., Stojanovic, A., Eisen, C., Quack, C., Falk, C. S., Umansky, V., et al. (2012). Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. The Journal of Immunology, 189(12), 5602–5611. doi:10.4049/jimmunol.1201018 (jimmunol.1201018 [pii]).

    Article  CAS  PubMed  Google Scholar 

  103. Tan, M. C., Goedegebuure, P. S., Belt, B. A., Flaherty, B., Sankpal, N., Gillanders, W. E., et al. (2009). Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. The Journal of Immunology, 182(3), 1746–1755 (182/3/1746 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jaafar, F., Righi, E., Lindstrom, V., Linton, C., Nohadani, M., Van Noorden, S., et al. (2009). Correlation of CXCL12 expression and FoxP3+ cell infiltration with human papillomavirus infection and clinicopathological progression of cervical cancer. American Journal of Pathology, 175(4), 1525–1535. doi:10.2353/ajpath.2009.090295 (S0002-9440(10)60664-5 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Facciabene, A., Peng, X., Hagemann, I. S., Balint, K., Barchetti, A., Wang, L. P., et al. (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature, 475(7355), 226–230. doi:10.1038/nature10169 (nature10169 [pii]).

    Article  CAS  PubMed  Google Scholar 

  106. Pandiyan, P., Zheng, L., Ishihara, S., Reed, J., & Lenardo, M. J. (2007). CD4+ CD25+ Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nature Immunology, 8(12), 1353–1362. doi:10.1038/ni1536 (ni1536 [pii]).

    Article  CAS  PubMed  Google Scholar 

  107. Massague, J. (2008). TGFbeta in cancer. Cell, 134(2), 215–230. doi:10.1016/j.cell.2008.07.001 (S0092-8674(08)00878-7 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Strauss, L., Bergmann, C., & Whiteside, T. L. (2009). Human circulating CD4+ CD25highFoxp3+ regulatory T cells kill autologous CD8+ but not CD4+ responder cells by Fas-mediated apoptosis. The Journal of Immunology, 182(3), 1469–1480 (182/3/1469 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nishikawa, H., & Sakaguchi, S. (2014). Regulatory T cells in cancer immunotherapy. Current Opinion in Immunology, 27, 1–7. doi:10.1016/j.coi.2013.12.005 (S0952-7915(13)00223-9 [pii]).

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, N., & Bevan, M. J. (2011). CD8(+) T cells: foot soldiers of the immune system. Immunity, 35(2), 161–168. doi:10.1016/j.immuni.2011.07.010 (S1074-7613(11)00303-7 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hickman, H. D., Takeda, K., Skon, C. N., Murray, F. R., Hensley, S. E., Loomis, J., et al. (2008). Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nature Immunology, 9(2), 155–165. doi:10.1038/ni1557 (ni1557 [pii]).

    Article  CAS  PubMed  Google Scholar 

  112. John, B., Harris, T. H., Tait, E. D., Wilson, E. H., Gregg, B., Ng, L. G., et al. (2009). Dynamic Imaging of CD8(+) T cells and dendritic cells during infection with Toxoplasma gondii. PLoS Pathogens, 5(7), e1000505. doi:10.1371/journal.ppat.1000505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lindquist, R. L., Shakhar, G., Dudziak, D., Wardemann, H., Eisenreich, T., Dustin, M. L., et al. (2004). Visualizing dendritic cell networks in vivo. Nature Immunology, 5(12), 1243–1250. doi:10.1038/ni1139 (ni1139 [pii]).

    Article  CAS  PubMed  Google Scholar 

  114. Curtsinger, J. M., Lins, D. C., & Mescher, M. F. (2003). Signal 3 determines tolerance versus full activation of naive CD8 T cells: Dissociating proliferation and development of effector function. Journal of Experimental Medicine, 197(9), 1141–1151. doi:10.1084/jem.20021910jem.20021910 ([pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Takemoto, N., Intlekofer, A. M., Northrup, J. T., Wherry, E. J., & Reiner, S. L. (2006). Cutting Edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. The Journal of Immunology, 177(11), 7515–7519 (177/11/7515 [pii]).

    Article  CAS  PubMed  Google Scholar 

  116. Curtsinger, J. M., Gerner, M. Y., Lins, D. C., & Mescher, M. F. (2007). Signal 3 availability limits the CD8 T cell response to a solid tumor. The Journal of Immunology, 178(11), 6752–6760 (178/11/6752 [pii]).

    Article  CAS  PubMed  Google Scholar 

  117. Groom, J. R., & Luster, A. D. (2011). CXCR3 ligands: Redundant, collaborative and antagonistic functions. Immunology and Cell Biology, 89(2), 207–215. doi:10.1038/icb.2010.158 (icb2010158 [pii]).

    Article  CAS  PubMed  Google Scholar 

  118. Hadrup, S., Donia, M., & Thor Straten, P. (2013). Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenvironment, 6(2), 123–133. doi:10.1007/s12307-012-0127-6

    Article  CAS  PubMed  Google Scholar 

  119. Azimi, F., Scolyer, R. A., Rumcheva, P., Moncrieff, M., Murali, R., McCarthy, S. W., et al. (2012). Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. Journal of Clinical Oncology, 30(21), 2678–2683. doi:10.1200/JCO.2011.37.8539 (JCO.2011.37.8539 [pii]).

    Article  PubMed  Google Scholar 

  120. Nakano, O., Sato, M., Naito, Y., Suzuki, K., Orikasa, S., Aizawa, M., et al. (2001). Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Research, 61(13), 5132–5136.

    CAS  PubMed  Google Scholar 

  121. Sato, E., Olson, S. H., Ahn, J., Bundy, B., Nishikawa, H., Qian, F., et al. (2005). Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18538–18543. doi:10.1073/pnas.0509182102 (0509182102 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sharma, P., Shen, Y., Wen, S., Yamada, S., Jungbluth, A. A., Gnjatic, S., et al. (2007). CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proceedings of the National Academy of Sciences, 104(10), 3967–3972. doi:10.1073/pnas.0611618104 (0611618104 [pii]).

    Article  CAS  Google Scholar 

  123. Gooden, M. J., de Bock, G. H., Leffers, N., Daemen, T., & Nijman, H. W. (2011). The prognostic influence of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. British Journal of Cancer, 105(1), 93–103. doi:10.1038/bjc.2011.189 (bjc2011189 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Maher, J., & Davies, E. T. (2004). Targeting cytotoxic T lymphocytes for cancer immunotherapy. British Journal of Cancer, 91(5), 817–821. doi:10.1038/sj.bjc.66020226602022 ([pii]).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Bendelac, A., Savage, P. B., & Teyton, L. (2007). The biology of NKT cells. Annual Review of Immunology, 25, 297–336. doi:10.1146/annurev.immunol.25.022106.141711

    Article  CAS  PubMed  Google Scholar 

  126. Gao, B., Radaeva, S., & Park, O. (2009). Liver natural killer and natural killer T cells: Immunobiology and emerging roles in liver diseases. Journal of Leukocyte Biology, 86(3), 513–528. doi:10.1189/JLB.0309135 (JLB.0309135 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Godfrey, D. I., Stankovic, S., & Baxter, A. G. (2010). Raising the NKT cell family. Nature Immunology, 11(3), 197–206. doi:10.1038/ni.1841 (ni.1841 [pii]).

    Article  CAS  PubMed  Google Scholar 

  128. Terabe, M., & Berzofsky, J. A. (2008). The role of NKT cells in tumor immunity. Advances in Cancer Research, 101, 277–348. doi:10.1016/S0065-230X(08)00408-9 (S0065-230X(08)00408-9 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vivier, E., Ugolini, S., Blaise, D., Chabannon, C., & Brossay, L. (2012). Targeting natural killer cells and natural killer T cells in cancer. Nature Reviews Immunology, 12(4), 239–252. doi:10.1038/nri3174 (nri3174 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wu, Y. L., Ding, Y. P., Tanaka, Y., Shen, L. W., Wei, C. H., Minato, N., et al. (2014). Gammadelta T cells and their potential for immunotherapy. The International Journal of Biological Sciences, 10(2), 119–135. doi:10.7150/ijbs.7823ijbsv10p0119 ([pii]).

    Article  CAS  PubMed  Google Scholar 

  131. Paul, S., & Lal, G. (2015). Role of gamma-delta (gammadelta) T cells in autoimmunity. Journal of Leukocyte Biology, 97(2), 259–271, doi:10.1189/jlb.3RU0914-443R (jlb.3RU0914-443R [pii]).

  132. Gogoi, D., & Chiplunkar, S. V. (2013). Targeting gamma delta T cells for cancer immunotherapy: Bench to bedside. Indian Journal of Medical Research, 138(5), 755–761 (IndianJMedRes_2013_138_5_755_124692 [pii]).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Silva-Santos, B., Serre, K., & Norell, H. (2015). Gammadelta T cells in cancer. Nature Reviews Immunology, 15(11), 683–691. doi:10.1038/nri3904 (nri3904 [pii]).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Rotte .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Rotte, A., Bhandaru, M. (2016). T-Lymphocytes. In: Immunotherapy of Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-319-48066-4_7

Download citation

Publish with us

Policies and ethics