Skip to main content

Overview of Immune System

  • Chapter
  • First Online:
Immunotherapy of Melanoma
  • 1051 Accesses

Abstract

Immune system refers to a unique and highly effective mechanism evolved in all the living organisms that resists, tolerates or controls the growth of foreign organisms inside the host. In addition to providing protection from foreign organisms, immune system also functions in identifying abnormal cells of the host such as cancer cells and prevents the development of cancers. In this chapter a detailed overview of immune system is presented. First the two different types of immune responses including innate and adaptive responses are introduced along with the details of differences between two types of responses. Innate immune response, which provides the immediate and first-line of defense, is then discussed with details on neutrophils, eosinophils, mast cells, basophils, natural killer cells and macrophages. Dendritic cells, which are critical for anti-cancer immune response, are discussed in a separate chapter. Complement system which plays an important role in innate immune response is also discussed in this chapter along with other innate immune cells. Next, the adaptive immune response, a highly evolved and target-specific defense against foreign organisms is discussed. While, adaptive immune response involves both T- and B-cells, B-cells are discussed in this chapter and T-cells are discussed in a separate chapter due to their significance in immunotherapy of cancer. The role of both innate and adaptive immune cells during cancer development is described and the mechanisms by which they support or oppose cancer progression is specially emphasized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkin, J., & Cohen, B. (2001). An overview of the immune system. Lancet, 357(9270), 1777–1789. doi:S0140-6736(00)04904-7 [pii] 10.1016/S0140-6736(00)04904-7.

  2. Chaplin, D. D. (2010). Overview of the immune response. Journal of Allergy and Clinical Immunology, 125(2 Suppl 2), S3–23. doi:S0091-6749(09)02837-1 [pii] 10.1016/j.jaci.2009.12.980

  3. Dunn, G. P., & Okada, H. (2015). Principles of immunology and its nuances in the central nervous system. Neuro Oncology, 17 Suppl 7, vii3-vii8, doi:nov175 [pii] 10.1093/neuonc/nov175.

  4. Takeda, K., & Akira, S. (2005). Toll-like receptors in innate immunity. International Immunology, 17(1), 1–14, doi:17/1/1 [pii] 10.1093/intimm/dxh186.

  5. Kawai, T., & Akira, S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity, 34(5), 637–650, doi:S1074-7613(11)00190-7 [pii] 10.1016/j.immuni.2011.05.006.

  6. Martinez-Pomares, L., & Gordon, S. (2007). Antigen presentation the macrophage way. Cell, 131(4), 641–643, doi:S0092-8674(07)01401-8 [pii] 10.1016/j.cell.2007.10.046.

  7. Kruger, P., Saffarzadeh, M., Weber, A. N., Rieber, N., Radsak, M., von Bernuth, H., et al. (2015). Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathogens, 11(3), e1004651, doi:10.1371/journal.ppat.1004651 PPATHOGENS-D-14-02099 [pii].

  8. Voehringer, D. (2013). Protective and pathological roles of mast cells and basophils. Nature Reviews Immunology, 13(5), 362–375, doi:nri3427 [pii] 10.1038/nri3427.

  9. Rosenberg, H. F., Dyer, K. D., & Foster, P. S. (2013). Eosinophils: changing perspectives in health and disease. Nature Reviews Immunology, 13(1), 9–22, doi:nri3341 [pii] 10.1038/nri3341.

  10. Morvan, M. G., & Lanier, L. L. (2016). NK cells and cancer: you can teach innate cells new tricks. Nature Reviews Cancer, 16(1), 7–19, doi:nrc.2015.5 [pii] 10.1038/nrc.2015.5.

  11. Martinet, L., & Smyth, M. J. (2015). Balancing natural killer cell activation through paired receptors. Nature Reviews Immunology, 15(4), 243–254, doi:nri3799 [pii] 10.1038/nri3799

  12. Sarma, J. V., & Ward, P. A. (2011). The complement system. Cell and Tissue Research, 343(1), 227–235. doi:10.1007/s00441-010-1034-0

    Google Scholar 

  13. D’Ignazio, L., Bandarra, D., & Rocha, S. (2016). NF-kappaB and HIF crosstalk in immune responses. FEBS Journal, 283(3), 413–424, doi:10.1111/febs.13578.

    Google Scholar 

  14. Pillay, J., den Braber, I., Vrisekoop, N., Kwast, L. M., de Boer, R. J., Borghans, J. A., et al. (2010). In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood, 116(4), 625–627, doi:blood-2010-01-259028 [pii] 10.1182/blood-2010-01-259028.

  15. Witko-Sarsat, V., Rieu, P., Descamps-Latscha, B., Lesavre, P., & Halbwachs-Mecarelli, L. (2000). Neutrophils: molecules, functions and pathophysiological aspects. Laboratory Investigation, 80(5), 617–653.

    Google Scholar 

  16. Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 13(3), 159–175, doi:nri3399 [pii] 10.1038/nri3399

  17. Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., et al. (2004). Neutrophil extracellular traps kill bacteria. Science, 303(5663), 1532–1535. doi:10.1126/science.1092385 303/5663/1532 [pii].

  18. Mitroulis, I., Kourtzelis, I., Kambas, K., Rafail, S., Chrysanthopoulou, A., Speletas, M., et al. (2010). Regulation of the autophagic machinery in human neutrophils. European Journal of Immunology, 40(5), 1461–1472. doi:10.1002/eji.200940025

    Google Scholar 

  19. Qu, H., Ricklin, D., & Lambris, J. D. (2009). Recent developments in low molecular weight complement inhibitors. Molecular Immunology, 47(2–3), 185–195. doi:S0161-5890(09)00696-8 [pii] 10.1016/j.molimm.2009.08.032

  20. Wagner, E., & Frank, M. M. (2010). Therapeutic potential of complement modulation. Nature Reviews Drug Discovery, 9(1), 43–56. doi:nrd3011 [pii] 10.1038/nrd3011

  21. McEwen, B. J. (1992). Eosinophils: a review. Veterinary Research Communications, 16(1), 11–44.

    Google Scholar 

  22. Radonjic-Hosli, S., & Simon, H. U. (2014). Eosinophils. Chemical Immunology and Allergy, 100, 193–204, doi:000358735 [pii] 10.1159/000358735

  23. Kay, A. B. (2015). The early history of the eosinophil. Clinical and Experimental Allergy, 45(3), 575–582. doi:10.1111/cea.12480

    Google Scholar 

  24. Hogan, S. P., Rosenberg, H. F., Moqbel, R., Phipps, S., Foster, P. S., Lacy, P., et al. (2008). Eosinophils: biological properties and role in health and disease. Clinical and Experimental Allergy, 38(5), 709–750. doi:CEA2958 [pii] 10.1111/j.1365-2222.2008.02958.x

  25. Davis, B. P., & Rothenberg, M. E. (2014). Eosinophils and cancer. Cancer Immunology Research, 2(1), 1–8. doi:2/1/1 [pii] 10.1158/2326-6066.CIR-13-0196.

  26. Stone, K. D., Prussin, C., & Metcalfe, D. D. (2010). IgE, mast cells, basophils, and eosinophils. Journal of Allergy and Clinical Immunology, 125(2 Suppl 2), S73–80, doi:S0091-6749(09)01734-5 [pii] 10.1016/j.jaci.2009.11.017

  27. Harvima, I. T., & Nilsson, G. (2011). Mast cells as regulators of skin inflammation and immunity. Acta Dermato Venereologica, 91(6), 644–650. doi:10.2340/00015555-1197

    Google Scholar 

  28. Khazaie, K., Blatner, N. R., Khan, M. W., Gounari, F., Gounaris, E., Dennis, K., et al. (2011). The significant role of mast cells in cancer. Cancer Metastasis Review, 30(1), 45–60. doi:10.1007/s10555-011-9286-z

    Google Scholar 

  29. Marech, I., Ammendola, M., Sacco, R., Capriuolo, G. S., Patruno, R., Rubini, R., et al. (2014). Serum tryptase, mast cells positive to tryptase and microvascular density evaluation in early breast cancer patients: possible translational significance. BMC Cancer, 14, 534. doi:1471–2407-14-534 [pii] 10.1186/1471-2407-14-534.

  30. Ch’ng, S., Wallis, R. A., Yuan, L., Davis, P. F., & Tan, S. T. (2006). Mast cells and cutaneous malignancies. Modern Pathology, 19(1), 149–159. doi:3800474 [pii] 10.1038/modpathol.3800474

  31. Dvorak, A. M. (2005). Ultrastructural studies of human basophils and mast cells. Journal of Histochemistry & Cytochemistry, 53(9), 1043–1070. doi:jhc.5R6647.2005 [pii] 10.1369/jhc.5R6647.2005

  32. Gibbs, B. F. (2008). Basophils as Key Regulators of Allergic Inflammation and Th2-type Immunity. World Allergy Organization Journal, 1(7), 123–128. doi:10.1097/WOX.0b013e31817a76fb 01312070-200807000-00002 [pii]

  33. Anthony, H. M. (1982). Blood basophils in lung cancer. British Journal of Cancer, 45(2), 209–216.

    Google Scholar 

  34. Galoppin, L., Noirot, C., Wastiaux, J. P., Scheinmann, P., Paupe, J., & Burtin, C. (1989). Comparison between number of basophils, blood histamine, and histamine release in cancer and noncancer patients. Journal of Allergy and Clinical Immunology, 84(4 Pt 1), 501–506.

    Google Scholar 

  35. De Monte, L., Wormann, S., Brunetto, E., Heltai, S., Magliacane, G., Reni, M., et al. (2016). Basophil Recruitment into Tumor-Draining Lymph Nodes Correlates with Th2 Inflammation and Reduced Survival in Pancreatic Cancer Patients. Cancer Research, 76(7), 1792–1803. doi:0008-5472.CAN-15-1801-T [pii] 10.1158/0008-5472.CAN-15-1801-T

  36. Kiessling, R., Klein, E., & Wigzell, H. (1975). “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. European Journal of Immunology, 5(2), 112–117. doi:10.1002/eji.1830050208

    Google Scholar 

  37. Kiessling, R., Klein, E., Pross, H., & Wigzell, H. (1975). “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. European Journal of Immunology, 5(2), 117–121. doi:10.1002/eji.1830050209

    Google Scholar 

  38. Pross, H. F., & Jondal, M. (1975). Cytotoxic lymphocytes from normal donors. A functional marker of human non-T lymphocytes. Clinical and Experimental Immunology, 21(2), 226–235.

    Google Scholar 

  39. Pross, H. F., & Jondal, M. (1975). Letter: Spontaneous cytotoxic activity as a test of human lymphocyte function. Lancet, 1(7902), 335–336.

    Google Scholar 

  40. Oldham, R. K. (1983). Natural killer cells: artifact to reality: an odyssey in biology. Cancer Metastasis Reviews, 2(4), 323–336.

    Google Scholar 

  41. Orange, J. S. (2013). Natural killer cell deficiency. Journal of Allergy and Clinical Immunology, 132(3), 515–525; quiz 526. doi:S0091-6749(13)01123-8 [pii] 10.1016/j.jaci.2013.07.020

  42. Mandal, A., & Viswanathan, C. (2015). Natural killer cells: In health and disease. Hematology Oncology Stem Cell Therapy, 8(2), 47–55. doi:S1658-3876(14)00108-3 [pii] 10.1016/j.hemonc.2014.11.006.

  43. Long, E. O., Kim, H. S., Liu, D., Peterson, M. E., & Rajagopalan, S. (2013). Controlling natural killer cell responses: integration of signals for activation and inhibition. Annual Review of Immunology, 31, 227–258. doi:10.1146/annurev-immunol-020711-075005

    Google Scholar 

  44. Bauer, S., Groh, V., Wu, J., Steinle, A., Phillips, J. H., Lanier, L. L., et al. (1999). Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science, 285(5428), 727–729. doi:7717 [pii]

    Google Scholar 

  45. Lanier, L. L. (2015). NKG2D Receptor and Its Ligands in Host Defense. Cancer Immunology Research, 3(6), 575–582. doi:3/6/575 [pii] 10.1158/2326-6066.CIR-15-0098

  46. Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W., & Jung, H. (2013). Regulation of ligands for the NKG2D activating receptor. Annual Review of Immunology, 31, 413–441. doi:10.1146/annurev-immunol-032712-095951

    Google Scholar 

  47. Kruse, P. H., Matta, J., Ugolini, S., & Vivier, E. (2014). Natural cytotoxicity receptors and their ligands. Immunology & Cell Biology, 92(3), 221–229. doi:icb201398 [pii] 10.1038/icb.2013.98

  48. Lakshmikanth, T., Burke, S., Ali, T. H., Kimpfler, S., Ursini, F., Ruggeri, L., et al. (2009). NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. Journal of Clinical Investigation, 119(5), 1251–1263. doi:36022 [pii] 10.1172/JCI36022

  49. Bruhns, P. (2012). Properties of mouse and human IgG receptors and their contribution to disease models. Blood, 119(24), 5640–5649. doi:blood-2012-01-380121 [pii] 10.1182/blood-2012-01-380121

  50. Wallin, R. P., Screpanti, V., Michaelsson, J., Grandien, A., & Ljunggren, H. G. (2003). Regulation of perforin-independent NK cell-mediated cytotoxicity. European Journal of Immunology, 33(10), 2727–2735. doi:10.1002/eji.200324070

    Google Scholar 

  51. Smyth, M. J., Cretney, E., Kelly, J. M., Westwood, J. A., Street, S. E., Yagita, H., et al. (2005). Activation of NK cell cytotoxicity. Molecular Immunology, 42(4), 501–510. doi:S0161-5890(04)00309-8 [pii] 10.1016/j.molimm.2004.07.034

  52. Roder, J. C., Haliotis, T., Klein, M., Korec, S., Jett, J. R., Ortaldo, J., et al. (1980). A new immunodeficiency disorder in humans involving NK cells. Nature, 284(5756), 553–555.

    Google Scholar 

  53. Sullivan, J. L., Byron, K. S., Brewster, F. E., & Purtilo, D. T. (1980). Deficient natural killer cell activity in x-linked lymphoproliferative syndrome. Science, 210(4469), 543–545.

    Google Scholar 

  54. Roder, J. C., & Haliotis, T. (1980). Do NK cells play a role in anti-tumor surveillance? Immunology Today, 1(5), 96–100. doi:0167-5699(80)90041-9 [pii] 10.1016/0167-5699(80)90041-9

  55. Hersey, P., Edwards, A., Honeyman, M., & McCarthy, W. H. (1979). Low natural-killer-cell activity in familial melanoma patients and their relatives. British Journal of Cancer, 40(1), 113–122.

    Google Scholar 

  56. Imai, K., Matsuyama, S., Miyake, S., Suga, K., & Nakachi, K. (2000). Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet, 356(9244), 1795–1799. doi:S0140-6736(00)03231-1 [pii] 10.1016/S0140-6736(00)03231-1

  57. Alvarez, I. B., Pasquinelli, V., Jurado, J. O., Abbate, E., Musella, R. M., de la Barrera, S. S., et al. (2010). Role played by the programmed death-1-programmed death ligand pathway during innate immunity against Mycobacterium tuberculosis. The Journal of Infectious Diseases, 202(4), 524–532. doi:10.1086/654932

    Google Scholar 

  58. Norris, S., Coleman, A., Kuri-Cervantes, L., Bower, M., Nelson, M., & Goodier, M. R. (2012). PD-1 expression on natural killer cells and CD8(+) T cells during chronic HIV-1 infection. Viral Immunology, 25(4), 329–332. doi:10.1089/vim.2011.0096

    Google Scholar 

  59. Gordon, S. (2007). The macrophage: past, present and future. European Journal of Immunology, 37 Suppl 1, S9–17. doi:10.1002/eji.200737638

    Google Scholar 

  60. Wynn, T. A., Chawla, A., & Pollard, J. W. (2013). Macrophage biology in development, homeostasis and disease. Nature, 496(7446), 445–455, doi:nature12034 [pii] 10.1038/nature12034

  61. Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunology, 25(12), 677–686. doi:S1471-4906(04)00295-9 [pii] 10.1016/j.it.2004.09.015

  62. Hume, D. A. (2012). Macrophage Biology Review. http://www.macrophages.com/macrophage-review#macrophage-tissue-expression

  63. Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., et al. (2010). Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, 330(6005), 841–845. doi:science.1194637 [pii] 10.1126/science.1194637

  64. Hoeffel, G., Wang, Y., Greter, M., See, P., Teo, P., Malleret, B., et al. (2012). Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. The Journal of Experimental Medicine, 209(6), 1167–1181. doi:jem.20120340 [pii] 10.1084/jem.20120340

  65. Schulz, C., Gomez Perdiguero, E., Chorro, L., Szabo-Rogers, H., Cagnard, N., Kierdorf, K., et al. (2012). A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science, 336(6077), 86–90. doi:science.1219179 [pii] 10.1126/science.1219179

  66. Stanley, E. R. (2009). Lineage commitment: cytokines instruct, at last! Cell Stem Cell, 5(3), 234–236. doi:S1934-5909(09)00398-1 [pii] 10.1016/j.stem.2009.08.015

  67. Shi, C., & Pamer, E. G. (2011). Monocyte recruitment during infection and inflammation. Nature Reviews Immunology, 11(11), 762–774. doi:nri3070 [pii] 10.1038/nri3070

  68. Brancato, S. K., & Albina, J. E. (2011). Wound macrophages as key regulators of repair: origin, phenotype, and function. American Journal of Pathology, 178(1), 19–25. doi:S0002-9440(10)00045-3 [pii] 10.1016/j.ajpath.2010.08.003

  69. Koh, T. J., & DiPietro, L. A. (2011). Inflammation and wound healing: the role of the macrophage. Expert Reviews in Molecular Medicine, 13, e23. doi:S1462399411001943 [pii] 10.1017/S1462399411001943

  70. Zhang, Q. W., Liu, L., Gong, C. Y., Shi, H. S., Zeng, Y. H., Wang, X. Z., et al. (2012). Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One, 7(12), e50946. doi:10.1371/journal.pone.0050946 PONE-D-12-17794 [pii]

  71. Ruffell, B., & Coussens, L. M. (2015). Macrophages and therapeutic resistance in cancer. Cancer Cell, 27(4), 462–472. doi:S1535-6108(15)00065-3 [pii] 10.1016/j.ccell.2015.02.015

  72. Mauri, C., & Bosma, A. (2012). Immune regulatory function of B cells. Annual Review of Immunology, 30, 221–241. doi:10.1146/annurev-immunol-020711-074934

    Google Scholar 

  73. Chung, J. B., Silverman, M., & Monroe, J. G. (2003). Transitional B cells: step by step towards immune competence. Trends Immunology, 24(6), 343–349. doi:S1471490603001194 [pii]

    Google Scholar 

  74. LeBien, T. W., & Tedder, T. F. (2008). B lymphocytes: how they develop and function. Blood, 112(5), 1570–1580. doi:112/5/1570 [pii] 10.1182/blood-2008-02-078071

  75. Pieper, K., Grimbacher, B., & Eibel, H. (2013). B-cell biology and development. Journal of Allergy and Clinical Immunology, 131(4), 959–971. doi:S0091-6749(13)00256-X [pii] 10.1016/j.jaci.2013.01.046

  76. Tobon, G. J., Izquierdo, J. H., & Canas, C. A. (2013). B lymphocytes: development, tolerance, and their role in autoimmunity-focus on systemic lupus erythematosus. Autoimmune Disorders, 2013, 827254. doi:10.1155/2013/827254

    Google Scholar 

  77. Melchers, F. (2015). Checkpoints that control B cell development. Journal of Clinical Investigation, 125(6), 2203–2210. doi:78083 [pii] 10.1172/JCI78083

  78. Cooper, M. D. (2015). The early history of B cells. Nature Reviews Immunology, 15(3), 191–197. doi:nri3801 [pii] 10.1038/nri3801

  79. von Behring, E., & Kitasato, S. (1890). Ueber das zutandekommen der diphtherie-immunitat und der tetanus-immunitat bei thieren. Deutsche Medizinsche Wochenschrift, 16, 1113–1114.

    Google Scholar 

  80. Tiselius, A., & Kabat, E. A. (1939). An Electrophoretic Study of Immune Sera and Purified Antibody Preparations. The Journal of Experimental Medicine, 69(1), 119–131.

    Google Scholar 

  81. Fagraeus, A. (1948). The plasma cellular reaction and its relation to the formation of antibodies in vitro. Journal of Immunology, 58(1), 1–13.

    Google Scholar 

  82. Cooper, M. D., Peterson, R. D., & Good, R. A. (1965). Delineation of the Thymic and Bursal Lymphoid Systems in the Chicken. Nature, 205, 143–146.

    Google Scholar 

  83. Cooper, M. D., Raymond, D. A., Peterson, R. D., South, M. A., & Good, R. A. (1966). The functions of the thymus system and the bursa system in the chicken. Journal of Experimental Medicine, 123(1), 75–102.

    Google Scholar 

  84. Miller, J. F., & Mitchell, G. F. (1968). Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. Journal of Experimental Medicine, 128(4), 801–820.

    Google Scholar 

  85. Mitchell, G. F., & Miller, J. F. (1968). Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. Journal of Experimental Medicine, 128(4), 821–837.

    Google Scholar 

  86. Coombs, R. R., Feinstein, A., & Wilson, A. B. (1969). Immunoglobulin determinants on the surface of human lymphocytes. Lancet, 2(7631), 1157–1160, doi:S0140-6736(69)92484-2 [pii]

    Google Scholar 

  87. Froland, S., Natvig, J. B., & Berdal, P. (1971). Surface-bound immunoglobulin as a marker of B lymphocytes in man. Nature New Biology, 234(51), 251–252.

    Google Scholar 

  88. Kondo, M. (2010). Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunology Reviews, 238(1), 37–46. doi:10.1111/j.1600-065X.2010.00963.x

    Google Scholar 

  89. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B. I., & Nagasawa, T. (2004). Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity, 20(6), 707–718. doi:10.1016/j.immuni.2004.05.001 S1074761304001335 [pii]

  90. Milne, C. D., & Paige, C. J. (2006). IL-7: a key regulator of B lymphopoiesis. Seminars in Immunology, 18(1), 20–30. doi:S1044-5323(05)00085-0 [pii] 10.1016/j.smim.2005.10.003

  91. Bouaziz, J. D., Yanaba, K., Venturi, G. M., Wang, Y., Tisch, R. M., Poe, J. C., et al. (2007). Therapeutic B cell depletion impairs adaptive and autoreactive CD4 + T cell activation in mice. Proceedings of National Academy of Science U S A, 104(52), 20878–20883. doi:0709205105 [pii] 10.1073/pnas.0709205105

  92. Harris, D. P., Goodrich, S., Gerth, A. J., Peng, S. L., & Lund, F. E. (2005). Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and the IFN-gamma receptor. Journal of Immunology, 174(11), 6781–6790. doi:174/11/6781 [pii]

    Google Scholar 

  93. Harris, D. P., Haynes, L., Sayles, P. C., Duso, D. K., Eaton, S. M., Lepak, N. M., et al. (2000). Reciprocal regulation of polarized cytokine production by effector B and T cells. Nature Immunology, 1(6), 475–482. doi:10.1038/82717

    Google Scholar 

  94. Johansson-Lindbom, B., & Borrebaeck, C. A. (2002). Germinal center B cells constitute a predominant physiological source of IL-4: implication for Th2 development in vivo. Journal of Immunology, 168(7), 3165–3172.

    Google Scholar 

  95. Harris, D. P., Goodrich, S., Mohrs, K., Mohrs, M., & Lund, F. E. (2005). Cutting edge: the development of IL-4-producing B cells (B effector 2 cells) is controlled by IL-4, IL-4 receptor alpha, and Th2 cells. Journal of Immunology, 175(11), 7103–7107, doi:175/11/7103 [pii]

    Google Scholar 

  96. Youinou, P., Taher, T. E., Pers, J. O., Mageed, R. A., & Renaudineau, Y. (2009). B lymphocyte cytokines and rheumatic autoimmune disease. Arthritis & Rheumatology, 60(7), 1873–1880. doi:10.1002/art.24665

    Google Scholar 

  97. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S., & Bhan, A. K. (2002). Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity, 16(2), 219–230. doi:S1074761302002741 [pii]

    Google Scholar 

  98. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D., & Anderton, S. M. (2002). B cells regulate autoimmunity by provision of IL-10. Nature Immunology, 3(10), 944–950. doi:10.1038/ni833 ni833 [pii]

  99. Wei, B., Velazquez, P., Turovskaya, O., Spricher, K., Aranda, R., Kronenberg, M., et al. (2005). Mesenteric B cells centrally inhibit CD4+ T cell colitis through interaction with regulatory T cell subsets. Proceedings of National Academy of Science U S A, 102(6), 2010–2015. doi:0409449102 [pii] 10.1073/pnas.0409449102

  100. Tretter, T., Venigalla, R. K., Eckstein, V., Saffrich, R., Sertel, S., Ho, A. D., et al. (2008). Induction of CD4+ T-cell anergy and apoptosis by activated human B cells. Blood, 112(12), 4555–4564. doi:blood-2008-02-140087 [pii] 10.1182/blood-2008-02-140087

  101. Lemoine, S., Morva, A., Youinou, P., & Jamin, C. (2011). Human T cells induce their own regulation through activation of B cells. Journal of Autoimmunity, 36(3–4), 228–238. doi:S0896-8411(11)00012-6 [pii] 10.1016/j.jaut.2011.01.005

  102. Morva, A., Lemoine, S., Achour, A., Pers, J. O., Youinou, P., & Jamin, C. (2012). Maturation and function of human dendritic cells are regulated by B lymphocytes. Blood, 119(1), 106–114. doi:blood-2011-06-360768 [pii] 10.1182/blood-2011-06-360768

  103. He, Y., Qian, H., Liu, Y., Duan, L., Li, Y., & Shi, G. (2014). The roles of regulatory B cells in cancer. Journal of Immunology Research, 2014, 215471, doi:10.1155/2014/215471

    Google Scholar 

  104. DiLillo, D. J., Yanaba, K., & Tedder, T. F. (2010). B cells are required for optimal CD4 + and CD8 + T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. Journal of Immunology, 184(7), 4006–4016. doi:jimmunol.0903009 [pii] 10.4049/jimmunol.0903009

  105. Sorrentino, R., Morello, S., Forte, G., Montinaro, A., De Vita, G., Luciano, A., et al. (2011). B cells contribute to the antitumor activity of CpG-oligodeoxynucleotide in a mouse model of metastatic lung carcinoma. American Journal of Respiratory and Critical Care Medicine, 183(10), 1369–1379. doi:201010-1738OC [pii] 10.1164/rccm.201010-1738OC

  106. Qin, Z., Richter, G., Schuler, T., Ibe, S., Cao, X., & Blankenstein, T. (1998). B cells inhibit induction of T cell-dependent tumor immunity. Nature Medicine, 4(5), 627–630.

    Google Scholar 

  107. Shah, S., Divekar, A. A., Hilchey, S. P., Cho, H. M., Newman, C. L., Shin, S. U., et al. (2005). Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. International Journal of Cancer, 117(4), 574–586. doi:10.1002/ijc.21177

    Google Scholar 

  108. Tecchio, C., Micheletti, A., & Cassatella, M. A. (2014). Neutrophil-derived cytokines: facts beyond expression. Frontiers in Immunology, 5, 508, doi:10.3389/fimmu.2014.00508

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Rotte .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Rotte, A., Bhandaru, M. (2016). Overview of Immune System. In: Immunotherapy of Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-319-48066-4_5

Download citation

Publish with us

Policies and ethics