Skip to main content

Interleukin-2

  • Chapter
  • First Online:
Immunotherapy of Melanoma
  • 1022 Accesses

Abstract

Interleukin-2 or IL-2 is a member of four-alpha helix bundle cytokine family that signals through IL-2 receptor and is one of the oldest cytokine to be discovered. It mainly functions as a T-cell growth factor. Its discovery is considered as a major milestone in the field of immunology and the cloning of its cDNA which allowed the production of recombinant IL-2 is considered as a turning point in immunology research. IL-2 is also one of the oldest cytokine to be tested for its use in the treatment of melanoma; its earliest use dates back to 1980s. Its use has been approved by US FDA for the treatment of patients with unresectable metastatic melanoma in 1998. In this chapter, the details of clinically used recombinant IL-2 including its structure, biology and pharmacology are discussed. First, the historical aspects of IL-2 discovery and generation of recombinant IL-2 are described followed by a brief note on the earliest recorded use of IL-2 in cancer patient. The structure of IL-2 protein and the variations introduced in the protein structure of clinically used IL-2 analog are described followed by description of the sequence of signaling events that occur due to the activation of IL-2 receptor. Next, the details of preclinical and clinical trials that demonstrated the potential of IL-2 in the treatment of metastatic melanoma, the description of aldesleukin (recombinant IL-2 formulation that is available in the market), clinical pharmacology, mechanism of action, adverse effects, drug interactions, contraindications and limitations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan, D. A., Ruscetti, F. W., & Gallo, R. (1976). Selective in vitro growth of T lymphocytes from normal human bone marrows. Science, 193(4257), 1007–1008.

    Article  CAS  PubMed  Google Scholar 

  2. Buchbinder, E. I., & McDermott, D. F. (2014). Interferon, interleukin-2, and other cytokines. Hematology/oncology Clinics of North America, 28(3), 571–583. doi:10.1016/j.hoc.2014.02.001 (S0889-8588(14)00016-1 [pii]).

    Article  PubMed  Google Scholar 

  3. Taniguchi, T., Matsui, H., Fujita, T., Takaoka, C., Kashima, N., Yoshimoto, R., et al. (1983). Structure and expression of a cloned cDNA for human interleukin-2. Nature, 302(5906), 305–310.

    Article  CAS  PubMed  Google Scholar 

  4. Fujita, T., Takaoka, C., Matsui, H., & Taniguchi, T. (1983). Structure of the human interleukin 2 gene. Proceedings of the National Academy of Sciences of the USA, 80(24), 7437–7441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gaffen, S. L., & Liu, K. D. (2004). Overview of interleukin-2 function, production and clinical applications. Cytokine, 28(3), 109–123. doi:10.1016/j.cyto.2004.06.010 (S1043-4666(04)00220-0 [pii]).

    Article  CAS  PubMed  Google Scholar 

  6. Floros, T., & Tarhini, A. A. (2015). Anticancer cytokines: Biology and clinical effects of Interferon-alpha2, Interleukin (IL)-2, IL-15, IL-21, and IL-12. Seminars in Oncology, 42(4), 539–548. doi:10.1053/j.seminoncol.2015.05.015 (S0093-7754(15)00113-X [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosenberg, S. A. (2014). IL-2: The first effective immunotherapy for human cancer. The Journal of Immunology, 192(12), 5451–5458. doi:10.4049/jimmunol.1490019 (192/12/5451 [pii]).

    Article  CAS  PubMed  Google Scholar 

  8. Liao, W., Lin, J. X., & Leonard, W. J. (2011). IL-2 family cytokines: New insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Current Opinion in Immunology, 23(5), 598–604. doi:10.1016/j.coi.2011.08.003 (S0952-7915(11)00106-3 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sim, G. C., & Radvanyi, L. (2014). The IL-2 cytokine family in cancer immunotherapy. Cytokine & Growth Factor Reviews, 25(4), 377–390. doi:10.1016/j.cytogfr.2014.07.018 (S1359-6101(14)00080-X [pii]).

    Article  CAS  Google Scholar 

  10. Malek, T. R., & Castro, I. (2010). Interleukin-2 receptor signaling: At the interface between tolerance and immunity. Immunity, 33(2), 153–165. doi:10.1016/j.immuni.2010.08.004 (S1074-7613(10)00287-6 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ju, G., Collins, L., Kaffka, K. L., Tsien, W. H., Chizzonite, R., Crowl, R., et al. (1987). Structure-function analysis of human interleukin-2. Identification of amino acid residues required for biological activity. Journal of Biological Chemistry, 262(12), 5723–5731.

    CAS  PubMed  Google Scholar 

  12. Rosenberg, S. A., Mule, J. J., Spiess, P. J., Reichert, C. M., & Schwarz, S. L. (1985). Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. Journal of Experimental Medicine, 161(5), 1169–1188.

    Article  CAS  PubMed  Google Scholar 

  13. Rosenberg, S. A., Lotze, M. T., Muul, L. M., Leitman, S., Chang, A. E., Ettinghausen, S. E., et al. (1985). Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. New England Journal of Medicine, 313(23), 1485–1492. doi:10.1056/NEJM198512053132327

    Article  CAS  PubMed  Google Scholar 

  14. Lotze, M. T., Chang, A. E., Seipp, C. A., Simpson, C., Vetto, J. T., & Rosenberg, S. A. (1986). High-dose recombinant interleukin 2 in the treatment of patients with disseminated cancer. Responses, treatment-related morbidity, and histologic findings. JAMA, 256(22), 3117–3124.

    Article  CAS  PubMed  Google Scholar 

  15. Rosenberg, S. A., Lotze, M. T., Yang, J. C., Topalian, S. L., Chang, A. E., Schwartzentruber, D. J., et al. (1993). Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. Journal of the National Cancer Institute, 85(8), 622–632.

    Article  CAS  PubMed  Google Scholar 

  16. Atkins, M. B., O’Boyle, K. R., Sosman, J. A., Weiss, G. R., Margolin, K. A., Ernest, M. L., et al. (1994). Multiinstitutional phase II trial of intensive combination chemoimmunotherapy for metastatic melanoma. Journal of Clinical Oncology, 12(8), 1553–1560.

    CAS  PubMed  Google Scholar 

  17. Atkins, M. B., Lotze, M. T., Dutcher, J. P., Fisher, R. I., Weiss, G., Margolin, K., et al. (1999). High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: Analysis of 270 patients treated between 1985 and 1993. Journal of Clinical Oncology, 17(7), 2105–2116.

    CAS  PubMed  Google Scholar 

  18. Atkins, M. B., Kunkel, L., Sznol, M., & Rosenberg, S. A. (2000). High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: Long-term survival update. The Cancer Journal from Scientific American, 6(Suppl 1), S11–S14.

    PubMed  Google Scholar 

  19. Doyle, M. V., Lee, M. T., & Fong, S. (1985). Comparison of the biological activities of human recombinant interleukin-2(125) and native interleukin-2. Journal of Biological Response Modifiers, 4(1), 96–109.

    CAS  PubMed  Google Scholar 

  20. Lotze, M. T., Matory, Y. L., Ettinghausen, S. E., Rayner, A. A., Sharrow, S. O., Seipp, C. A., et al. (1985). In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. The Journal of Immunology, 135(4), 2865–2875.

    CAS  PubMed  Google Scholar 

  21. Noble, S., & Goa, K. L. (1997). Aldesleukin (recombinant interleukin-2). BioDrugs, 7(5), 394–422. (070507 [pii]).

    Article  CAS  PubMed  Google Scholar 

  22. Koths, K. H. R. (Ed.). (1985). Pharmacokinetic studies on 35S-labeled recombinant interleukin-2 in mice. (Cellular and Molecular Biology of Lymphokines.). Orlando: Academic Press.

    Google Scholar 

  23. Konrad, M. W., Hemstreet, G., Hersh, E. M., Mansell, P. W., Mertelsmann, R., Kolitz, J. E., et al. (1990). Pharmacokinetics of recombinant interleukin 2 in humans. Cancer Research, 50(7), 2009–2017.

    CAS  PubMed  Google Scholar 

  24. Kim, H. P., Imbert, J., & Leonard, W. J. (2006). Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine & Growth Factor Reviews, 17(5), 349–366. doi:10.1016/j.cytogfr.2006.07.003 (S1359-6101(06)00048-7 [pii]).

    Article  CAS  Google Scholar 

  25. Zhu, J., Yamane, H., & Paul, W. E. (2010). Differentiation of effector CD4 T cell populations (*). Annual Review of Immunology, 28, 445–489. doi:10.1146/annurev-immunol-030409-101212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin, J. X., Migone, T. S., Tsang, M., Friedmann, M., Weatherbee, J. A., Zhou, L., et al. (1995). The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity, 2(4), 331–339.

    Article  CAS  PubMed  Google Scholar 

  27. Winkelhake, J. L., & Gauny, S. S. (1990). Human recombinant interleukin-2 as an experimental therapeutic. Pharmacological Reviews, 42(1), 1–28.

    CAS  PubMed  Google Scholar 

  28. Fyfe, G., Fisher, R. I., Rosenberg, S. A., Sznol, M., Parkinson, D. R., & Louie, A. C. (1995). Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. Journal of Clinical Oncology, 13(3), 688–696.

    CAS  PubMed  Google Scholar 

  29. Bock, S. N., Lee, R. E., Fisher, B., Rubin, J. T., Schwartzentruber, D. J., Wei, J. P., et al. (1990). A prospective randomized trial evaluating prophylactic antibiotics to prevent triple-lumen catheter-related sepsis in patients treated with immunotherapy. Journal of Clinical Oncology, 8(1), 161–169.

    CAS  PubMed  Google Scholar 

  30. Snydman, D. R., Sullivan, B., Gill, M., Gould, J. A., Parkinson, D. R., & Atkins, M. B. (1990). Nosocomial sepsis associated with interleukin-2. Annals of Internal Medicine, 112(2), 102–107.

    Article  CAS  PubMed  Google Scholar 

  31. Hartmann, L. C., Urba, W. J., Steis, R. G., Smith, J. W., 2nd, Vander Molen, L. A., Creekmore, S. P., et al. (1989). Use of prophylactic antibiotics for prevention of intravascular catheter-related infections in interleukin-2-treated patients. Journal of the National Cancer Institute, 81(15), 1190–1193.

    Article  CAS  PubMed  Google Scholar 

  32. Mier, J. W., Vachino, G., Klempner, M. S., Aronson, F. R., Noring, R., Smith, S., et al. (1990). Inhibition of interleukin-2-induced tumor necrosis factor release by dexamethasone: Prevention of an acquired neutrophil chemotaxis defect and differential suppression of interleukin-2-associated side effects. Blood, 76(10), 1933–1940.

    CAS  PubMed  Google Scholar 

  33. Liao, W., Lin, J. X., & Leonard, W. J. (2013). Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity, 38(1), 13–25. doi:10.1016/j.immuni.2013.01.004 (S1074-7613(13)00011-3 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Littman, D. R., & Rudensky, A. Y. (2010). Th17 and regulatory T cells in mediating and restraining inflammation. Cell, 140(6), 845–858. doi:10.1016/j.cell.2010.02.021 (S0092-8674(10)00174-1 [pii]).

    Article  CAS  PubMed  Google Scholar 

  35. Shevach, E. M. (2009). Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 30(5), 636–645. doi:10.1016/j.immuni.2009.04.010 (S1074-7613(09)00197-6 [pii]).

    Article  CAS  PubMed  Google Scholar 

  36. Sakaguchi, S., Yamaguchi, T., Nomura, T., & Ono, M. (2008). Regulatory T cells and immune tolerance. Cell, 133(5), 775–787. doi:10.1016/j.cell.2008.05.009 (S0092-8674(08)00624-7 [pii]).

    Article  CAS  PubMed  Google Scholar 

  37. Cesana, G. C., DeRaffele, G., Cohen, S., Moroziewicz, D., Mitcham, J., Stoutenburg, J., et al. (2006). Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. Journal of Clinical Oncology, 24(7), 1169–1177. doi:10.1200/JCO.2005.03.6830 (24/7/1169 [pii]).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Rotte .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Rotte, A., Bhandaru, M. (2016). Interleukin-2. In: Immunotherapy of Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-319-48066-4_10

Download citation

Publish with us

Policies and ethics