Skip to main content

Trust and Risk-Based Access Control for Privacy Preserving Threat Detection Systems

  • Conference paper
  • First Online:
Future Data and Security Engineering (FDSE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10018))

Included in the following conference series:

Abstract

Intrusion and threat detection systems analyze large amount of security-related data logs for detecting potentially harmful patterns. However, log data often contain sensitive and personal information, and their access and processing should be minimized. Anonymization can provide the technical mean to reduce the privacy risk, but it should carefully applied and balanced with utility requirements of the different phases of the process: a first exploration analysis needs less details than an investigation on a suspect set of logs. As a result, a complex access control framework has to be put in place to, simultaneously, address privacy and utility requirements. In this paper we propose a trust- and risk-aware access control framework for Threat Detection Systems, where each access request is evaluated by comparing the privacy-risk and the trustworthiness of the request. When the risk is too large compared to the trust level, the framework can apply adaptive adjustment strategies to decrease the risk (e.g., by selectively obfuscating the data) or to increase the trust level to perform a given task. We show how this model can provide meaningful results, and real-time performance, for an industrial threat detection solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer to these systems as TDS, to distinguish them from network level intrusion detection systems (often called IDS or SIEM). Moreover, we base our description on the SAP Enterprise Threat Detection, but the analysis could be applied to other solutions, including IDS. For a comparison between application and network level intrusion detection systems, see [18].

  2. 2.

    In most cases the dependency of risk from permission is mediated by roles. For the sake of simplicity, we do not consider here roles, for an extension of this model including roles, we can follow the lines of the models described in [6].

  3. 3.

    Other privacy metrics exist (for example, \(\ell \)-diversity, and t-closeness, see [15] ), but k-anonymity is still a de-facto standard in real applications.

References

  1. Armando, A., Bezzi, M., Cerbo, F., Metoui, N.: Balancing trust and risk in access control. In: Debruyne, C., Panetto, H., Meersman, R., Dillon, T., Weichhart, G., An, Y., Ardagna, C.A. (eds.) OTM 2015. LNCS (ISAIH), vol. 9415, pp. 660–676. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26148-5_45

    Google Scholar 

  2. Armando, A., Bezzi, M., Metoui, N., Sabetta, A.: Risk-aware information disclosure. In: Garcia-Alfaro, J., Herrera-Joancomartí, J., Lupu, E., Posegga, J., Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/QASA/SETOP -2014. LNCS, vol. 8872, pp. 266–276. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17016-9_17

    Google Scholar 

  3. Armando, A., Bezzi, M., Metoui, N., Sabetta, A.: Risk-based privacy-aware information disclosure. Int. J. Secur. Softw. Eng. 6(2), 70–89 (2015). http://dx.doi.org/10.4018/IJSSE.2015040104

    Article  Google Scholar 

  4. Bezzi, M.: An information theoretic approach for privacy metrics. Trans. Data Priv. 3(3), 199–215 (2010)

    MathSciNet  Google Scholar 

  5. Brickell, J., Shmatikov, V.: The cost of privacy: destruction of data-mining utility in anonymized data publishing. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 70–78. ACM, NewYork (2008). http://doi.acm.org/10.1145/1401890.1401904

  6. Chen, L., Crampton, J.: Risk-aware role-based access control. In: Meadows, C., Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 140–156. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29963-6_11

    Chapter  Google Scholar 

  7. Chen, L., Crampton, J., Kollingbaum, M.J., Norman, T.J.: Obligations in risk-aware access control. In: Cuppens-Boulahia, N., Fong, P., García-Alfaro, J., Marsh, S., Steghöfer, J. (eds.) PST, pp. 145–152. IEEE (2012). http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6287257

  8. Cheng, P.C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.: Fuzzy multi-level security: an experiment on quantified risk-adaptive access control. In: IEEE Symposium on Security and Privacy, pp. 222–230. IEEE Computer Society (2007). http://dblp.uni-trier.de/db/conf/sp/sp. 2007.html#ChengRKKWR07

  9. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Theory of privacy and anonymity. In: Atallah, M., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook, 2nd edn. CRC Press (2009)

    Google Scholar 

  10. Clifton, C., Tassa, T.: On syntactic anonymity and differential privacy. Trans. Data Priv. 6(2), 161–183 (2013). http://dl.acm.org/citation.cfm?id=2612167.2612170

    MathSciNet  Google Scholar 

  11. Committee on Strategies for Responsible Sharing of Clinical Trial Data: Sharing Clinical Trial Data: Maximizing Benefits, Minimizing Risk. National Academies Press (US), Washington (DC) (2015)

    Google Scholar 

  12. Dickens, L., Russo, A., Cheng, P.C., Lobo, J.: Towards learning risk estimation functions for access control. In: Snowbird Learning Workshop (2010). https://www.usukitacs.com/papers/6006/TA2_22_Dickens_learning_risk_estimation.pdf

  13. FRA and the Council of Europe: handbook on european data protection law. Technical report (2014)

    Google Scholar 

  14. Friedewald, M., Pohoryles, R.J.: Privacy and Security in the Digital Age: Privacy in the Age of Super-Technologies. Routledge, Abingdon (2016)

    Google Scholar 

  15. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010). http://doi.acm.org/10.1145/1749603.1749605

    Article  Google Scholar 

  16. Ghinita, G., Karras, P., Kalnis, P., Mamoulis, N.: Fast data anonymization with low information loss. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 758–769 (2007). VLDB Endowment

    Google Scholar 

  17. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision. Decision Support Systems 43(2), 618–644 (2007). Emerging issues in Collaborative Commerce. http://www.sciencedirect.com/science/article/B6V8S-4GJK82P-1/2/a9a6e96414fa04641c1d31a57989618d

    Article  Google Scholar 

  18. Kaempfer, M.: (2015). http://scn.sap.com/community/security/blog/2015/03/04/sap-enterprise-threat-detection-and-siem-is-this-not-the-same

  19. Kohlmayer, F., Prasser, F., Eckert, C., Kuhn, K.A.: A flexible approach to distributed data anonymization. J. Biomed. Inform. 50, 62–76 (2014). Special issue on Informatics Methods in Medical Privacy

    Article  Google Scholar 

  20. Kounine, A., Bezzi, M.: Assessing disclosure risk in anonymized datasets. In: Proceedings of the FloCon Workshop, January 2009

    Google Scholar 

  21. Lakkaraju, K., Slagell, A.: Evaluating the utility of anonymized network traces for intrusion detection. In: Proceedings of the 4th International Conference on Security and Privacy in Communication Netowrks, SecureComm 2008, pp. 17:1–17:8. ACM, NewYork (2008). http://doi.acm.org/10.1145/1460877.1460899

  22. Li, X., Zhou, F., Yang, X.: A multi-dimensional trust evaluation model for large-scale p2p computing. J. Parallel Distrib. Comput. 71(6), 837–847 (2011)

    Article  MATH  Google Scholar 

  23. Mivule, K., Anderson, B.: A study of usability-aware network trace anonymization. In: Science and Information Conference (SAI), 2015, pp. 1293–1304. IEEE (2015)

    Google Scholar 

  24. Narayanan, A., Huey, J., Felten, E.W.: A precautionary approach to big data privacy. In: Gutwirth, S., Leenes, R., De Hert, P. (eds.) Data Protection on the Move, vol. 24, pp. 357–385. Springer, Dordrecht (2016)

    Chapter  Google Scholar 

  25. Oprea, A., Li, Z., Yen, T.F., Chin, S.H., Alrwais, S.: Detection of early-stage enterprise infection by mining large-scale log data. In: 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 45–56. IEEE (2015)

    Google Scholar 

  26. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)

    Article  Google Scholar 

  27. Scholl, M.A., Stine, K.M., Hash, J., Bowen, P., Johnson, L.A., Smith, C.D., Steinberg, D.I.: Spp. 800–66 rev. 1. an introductory resource guide for implementing the health insurance portability and accountability act (hipaa) security rule. Technical report (2008)

    Google Scholar 

  28. Shaikh, R.A., Adi, K., Logrippo, L.: Dynamic risk-based decision access control systems. Comput. Secur. 31(4), 447–464 (2012)

    Article  Google Scholar 

  29. Templ, M., Meindl, B., Kowarik, A.: Introduction to statistical disclosure control (sdc). Project: Relative to the testing of SDC algorithms and provision of practical SDC, data analysis OG (2013)

    Google Scholar 

  30. Ulltveit-Moe, N., Oleshchuk, V.A.: Measuring privacy leakage for IDS rules. CoRR abs/1308.5421. http://arxiv.org/abs/1308.5421(2013)

  31. Ulltveit-Moe, N., Oleshchuk, V.A., Køien, G.M.: Location-aware mobile intrusion detection with enhanced privacy in a 5G context. Wireless Pers. Commun. 57(3), 317–338 (2011)

    Article  Google Scholar 

  32. Vaidya, J., Clifton, C.W., Zhu, Y.M.: Privacy Preserving Data Mining, vol. 19. Springer, New York (2006)

    MATH  Google Scholar 

  33. Zuech, R., Khoshgoftaar, T.M., Wald, R.: Intrusion detection and big heterogeneous data: a survey. J. Big Data 2(1), 1–41 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the FP7 EU-funded project SECENTIS (FP7-PEOPLE-2012-ITN, grant no. 317387) and EU-funded project TOREADOR (contract n. H2020-688797).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Metoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Metoui, N., Bezzi, M., Armando, A. (2016). Trust and Risk-Based Access Control for Privacy Preserving Threat Detection Systems. In: Dang, T., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds) Future Data and Security Engineering. FDSE 2016. Lecture Notes in Computer Science(), vol 10018. Springer, Cham. https://doi.org/10.1007/978-3-319-48057-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48057-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48056-5

  • Online ISBN: 978-3-319-48057-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics