Skip to main content

Role of Nutrition in Oral and Pharyngeal Cancers: From Etiology to Prevention

  • Chapter
  • First Online:
Development of Oral Cancer

Abstract

Oral and pharyngeal cancers (OPC) are highly prevalent tumors and rank as the sixth most common neoplasms. Some dietary factors have been linked to increased risk of OPC such as consumption of red meats and saturated fats, whereas other dietary factors were linked to reduced risk including consumption of fruits and vegetables, legumes, unsaturated fats, adequate intakes of vitamins and minerals, and dietary intake of bioactive phytochemicals. The molecular mechanisms of action by which dietary factors may influence risk of OPC are not fully elucidated. However, the antioxidation power of dietary antioxidants maintains cell membrane integrity and protects DNA from damage. Other chemopreventive mechanistic actions of dietary factors include the modulation of cell-signaling pathways associated with cell proliferation, migration, and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(4):309–16.

    Article  PubMed  Google Scholar 

  2. Lucenteforte E, et al. Dietary factors and oral and pharyngeal cancer risk. Oral Oncol. 2009;45(6):461–7.

    Article  CAS  PubMed  Google Scholar 

  3. WHO, World Cancer Report. 2014.

    Google Scholar 

  4. Petti S, Masood M, Scully C. The magnitude of tobacco smoking-betel quid chewing-alcohol drinking interaction effect on oral cancer in South-East Asia. A meta-analysis of observational studies. PLoS One. 2013;8(11):e78999.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maasland DH, et al. Consumption of vegetables and fruits and risk of subtypes of head–neck cancer in the Netherlands cohort study. Int J Cancer. 2015;136(5):E396–409.

    Article  CAS  PubMed  Google Scholar 

  6. Warnakulasuriya S, Wilson M. Food, nutrition and oral cancer. In: Food constituents and oral health: current status and future prospects CRC and Woodhead publishing limited. 2009. pp. 273–95.

    Google Scholar 

  7. Nagao T, et al. Serum antioxidant micronutrients and the risk of oral leukoplakia among Japanese. Oral Oncol. 2000;36(5):466–70.

    Article  CAS  PubMed  Google Scholar 

  8. Xu B, Chang SK. Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines. Food Chem. 2012;134(3):1287–96.

    Article  CAS  PubMed  Google Scholar 

  9. Garavello W, et al. Diet diversity and the risk of oral and pharyngeal cancer. Eur J Nutr. 2008;47(5):280–4.

    Article  PubMed  Google Scholar 

  10. Joury E, et al. Dietary patterns and the risk of oral, pharyngeal and laryngeal cancer in Syria: a case control study. BMC Nutr. 2016;2(1):1.

    Article  Google Scholar 

  11. Bosetti C, et al. Influence of the Mediterranean diet on the risk of cancers of the upper aerodigestive tract. Cancer Epidemiol Biomark Prev. 2003;12(10):1091–4.

    Google Scholar 

  12. Filomeno M, et al. The role of a Mediterranean diet on the risk of oral and pharyngeal cancer. Br J Cancer. 2014;111(5):981–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giacosa A, et al. Cancer prevention in Europe: the Mediterranean diet as a protective choice. Eur J Cancer Prev. 2013;22(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  14. Giraldi L, et al. Association between Mediterranean diet and head and neck cancer: results of a large case-control study in Italy. Eur J Cancer Prev. 2016;

    Google Scholar 

  15. Taghavi N, Yazdi I. Type of food and risk of oral cancer. Arch Iran Med. 2007;10(2):227–32.

    PubMed  Google Scholar 

  16. Bravi F, et al. Foods, nutrients and the risk of oral and pharyngeal cancer. Br J Cancer. 2013;109(11):2904–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jessri M, et al. Macronutrients, vitamins and minerals intake and risk of esophageal squamous cell carcinoma: a case-control study in Iran. Nutr J. 2011;10(1):1.

    Article  Google Scholar 

  18. Pavia M, et al. Association between fruit and vegetable consumption and oral cancer: a meta-analysis of observational studies. Am J Clin Nutr. 2006;83(5):1126–34.

    CAS  PubMed  Google Scholar 

  19. Marmot M, et al. World Cancer Research Fund/American Institute for Cancer Research Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. Washington DC: AICR, 2007.

    Google Scholar 

  20. Parkin D. 5. Cancers attributable to dietary factors in the UK in 2010. Br J Cancer. 2011;105:S24–6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wilson EA, Demmig-Adams B. Antioxidant, anti-inflammatory, and antimicrobial properties of garlic and onions. Nutr Food Sci. 2007;37(3):178–83.

    Article  Google Scholar 

  22. Galeone C, et al. Onion and garlic use and human cancer. Am J Clin Nutr. 2006;84(5):1027–32.

    CAS  PubMed  Google Scholar 

  23. Keck A-S, Finley JW. Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr Cancer Ther. 2004;3(1):5–12.

    Article  CAS  PubMed  Google Scholar 

  24. Bosetti C, et al. Cruciferous vegetables and cancer risk in a network of case–control studies. Ann Oncol. 2012;23(8):2198–203. p. mdr604

    Article  CAS  PubMed  Google Scholar 

  25. Powolny AA, Singh SV. Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds. Cancer Lett. 2008;269(2):305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herr I, Büchler MW. Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev. 2010;36(5):377–83.

    Article  CAS  PubMed  Google Scholar 

  27. Faris MeA, IE, Takruri HR, Issa AY. Role of lentils (Lens culinaris L.) in human health and nutrition: a review. Mediterr J Nutr Metab. 2013, 6(1):3–16.

    Google Scholar 

  28. Key TJ, et al. Cancer incidence in British vegetarians. Br J Cancer. 2009;101(1):192–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mishra A. Head and neck cancer in India–review of practices for prevention policy. Oral Dis. 2009;15(7):454–65.

    Article  CAS  PubMed  Google Scholar 

  30. Faris Mo’ez Al-Islam E, et al. Chemopreventive effect of raw and cooked lentils (Lens culinaris L) and soybeans (Glycine max) against azoxymethane-induced aberrant crypt foci. Nutr Res. 2009;29(5):355–62.

    Article  PubMed  Google Scholar 

  31. Tayyem RF, et al. Consumption of whole grains, refined cereals, and legumes and its association with colorectal cancer among Jordanians. Integr Cancer Ther. 2015;15(3):318–25. doi:10.1177/1534735415620010.

    Article  PubMed  Google Scholar 

  32. Kingsley K, et al. Soy protein extract (SPE) exhibits differential in vitro cell proliferation effects in oral cancer and normal cell lines. J Diet Suppl. 2011;8(2):169–88.

    Article  CAS  PubMed  Google Scholar 

  33. Secchi DG, et al. Red meat, micronutrients and oral squamous cell carcinoma of Argentine adult patients. Nutr Hosp. 2015;32(3):1214–21.

    PubMed  Google Scholar 

  34. Xu J, et al. Meat consumption and risk of oral cavity and oropharynx cancer: a meta-analysis of observational studies. PLoS One. 2014;9(4):e95048.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Samraj AN, et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci. 2015;112(2):542–7.

    Article  CAS  PubMed  Google Scholar 

  36. Han Y, et al. Fish consumption and risk of esophageal cancer and its subtypes: a systematic review and meta-analysis of observational studies. Eur J Clin Nutr. 2013;67(2):147–54.

    Article  CAS  PubMed  Google Scholar 

  37. Alaarg A, et al. Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: an in vitro assessment. Int J Nanomedicine. 2016;11:5027.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sharma G, et al. Apoptosis-mediated chemoprevention by different ratios of fish oil in experimental colon carcinogenesis. Cancer Investig. 2016;34(5):1–11.

    Article  Google Scholar 

  39. Algamas-Dimantov A, et al. Prevention of diabetes-promoted colorectal cancer by (n-3) polyunsaturated fatty acids and (n-3) PUFA mimetic. Oncotarget. 2014;5(20):9851.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Toporcov TN, Antunes JLF, Tavares MR. Fat food habitual intake and risk of oral cancer. Oral Oncol. 2004;40(9):925–31.

    Article  PubMed  Google Scholar 

  41. Franceschi S, et al. Food groups, oils and butter, and cancer of the oral cavity and pharynx. Br J Cancer. 1999;80(3–4):614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stark AH, Madar Z. Olive oil as a functional food: epidemiology and nutritional approaches. Nutr Rev. 2002;60(6):170–6.

    Article  PubMed  Google Scholar 

  43. Psaltopoulou T, et al. Olive oil intake is inversely related to cancer prevalence: a systematic review and a meta-analysis of 13,800 patients and 23,340 controls in 19 observational studies. Lipids Health Dis. 2011;10(1):1.

    Article  Google Scholar 

  44. Owen R, et al. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer. 2000;36(10):1235–47.

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka T, et al. A xanthine oxidase inhibitor 1′-acetoxychavicol acetate inhibits azoxymethane-induced colonic aberrant crypt foci in rats. Carcinogenesis. 1997;18(5):1113–8.

    Article  CAS  PubMed  Google Scholar 

  46. Omar SH. Oleuropein in olive and its pharmacological effects. Sci Pharm. 2010;78(2):133–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fresco P, et al. New insights on the anticancer properties of dietary polyphenols. Med Res Rev. 2006;26(6):747–66.

    Article  CAS  PubMed  Google Scholar 

  48. Arisi MF, et al. All trans-retinoic acid (ATRA) induces re-differentiation of early transformed breast epithelial cells. Int J Oncol. 2014;44(6):1831–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chainani-Wu N. Diet and oral, pharyngeal, and esophageal cancer. Nutr Cancer. 2002;44(2):104–26.

    Article  PubMed  Google Scholar 

  50. Soprano DR, Qin P, Soprano KJ. Retinoic acid receptors and cancers. Annu Rev Nutr. 2004;24:201–21.

    Article  CAS  PubMed  Google Scholar 

  51. Edefonti V, et al. Vitamin E intake from natural sources and head and neck cancer risk: a pooled analysis in the International head and neck cancer epidemiology consortium. Br J Cancer. 2015;113(1):182–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu J, Qi Q, Zhang Y. Comparative research for the dietary pattern of patients with esophageal cancer at different developing stages and the daily intake of vitamin A, E and β-carotene. Pak J Pharm Sci. 2014;27(4):1093–8.

    PubMed  Google Scholar 

  53. Li Q, et al. Vitamin or mineral supplement intake and the risk of head and neck cancer: pooled analysis in the INHANCE consortium. Int J Cancer. 2012;131(7):1686–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Edefonti V, et al. Natural vitamin C intake and the risk of head and neck cancer: a pooled analysis in the International head and neck cancer epidemiology consortium. Int J Cancer. 2015;137(2):448–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maasland DH, et al. Toenail selenium status and risk of subtypes of head-neck cancer: the Netherlands cohort study. Eur J Cancer. 2016;60:83–92.

    Article  CAS  PubMed  Google Scholar 

  56. Hassan CE, Webster TJ. The effect of red-allotrope selenium nanoparticles on head and neck squamous cell viability and growth. Int J Nanomedicine. 2016;11:3641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen F, et al. Selenium-binding protein 1 in head and neck cancer is low-expression and associates with the prognosis of nasopharyngeal carcinoma. Medicine. 2016;95(35):e4592.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cai X, et al. Selenium exposure and cancer risk: an updated meta-analysis and meta-regression. Sci Rep. 2016;6:19213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mainous AG, Gill JM, Everett CJ. Transferrin saturation, dietary iron intake, and risk of cancer. Ann Fam Med. 2005;3(2):131–7.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Richie JP, et al. Blood iron, glutathione, and micronutrient levels and the risk of oral cancer. Nutr Cancer. 2008;60(4):474–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Baharvand M, et al. Serum levels of ferritin, copper, and zinc in patients with oral cancer. Biom J. 2014;37(5):331.

    Google Scholar 

  62. O’Doherty MG, et al. Iron intake and markers of iron status and risk of Barrett’s esophagus and esophageal adenocarcinoma. Cancer Causes Control. 2010;21(12):2269–79.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fonseca-Nunes A, Jakszyn P, Agudo A. Iron and cancer risk—a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomark Prev. 2013;23(1):12–31.

    Article  Google Scholar 

  64. Galeone C, et al. Folate intake and the risk of oral cavity and pharyngeal cancer: a pooled analysis within the International head and neck cancer epidemiology consortium. Int J Cancer. 2015;136(4):904–14.

    Article  CAS  PubMed  Google Scholar 

  65. Matsuo K, et al. Folate, alcohol, and aldehyde dehydrogenase 2 polymorphism and the risk of oral and pharyngeal cancer in Japanese. Eur J Cancer Prev. 2012;21(2):193–8.

    Article  CAS  PubMed  Google Scholar 

  66. Ibiebele TI, et al. High intake of folate from food sources is associated with reduced risk of esophageal cancer in an Australian population. J Nutr. 2010;141(2):274–83. doi:10.3945/jn.110.131235.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sharp L, et al. Intakes of dietary folate and other B vitamins are associated with risks of esophageal adenocarcinoma, Barrett’s esophagus, and reflux esophagitis. J Nutr. 2013;143(12):1966–73. doi:10.3945/jn.113.174664.

    Article  CAS  PubMed  Google Scholar 

  68. Xiao Q, et al. Intakes of folate, methionine, vitamin B6, and vitamin B12 with risk of esophageal and gastric cancer in a large cohort study. Br J Cancer. 2014;110(5):1328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids. Molecules. 2012;17(3):3202–42.

    Article  CAS  PubMed  Google Scholar 

  70. Livny O, et al. Lycopene inhibits proliferation and enhances gap-junction communication of KB-1 human oral tumor cells. J Nutr. 2002;132(12):3754–9.

    CAS  PubMed  Google Scholar 

  71. Leoncini E, et al. Carotenoid intake from natural sources and head and neck cancer: a systematic review and meta-analysis of epidemiological studies. Cancer Epidemiol Biomark Prev. 2015;24(7):1003–11.

    Article  CAS  Google Scholar 

  72. de Munter L, et al. Vitamin and carotenoid intake and risk of head-neck cancer subtypes in the Netherlands cohort study. Am J Clin Nutr. 2015;102(2):420–32. doi:10.3945/ajcn.114.106096.

    Article  PubMed  Google Scholar 

  73. Romagnolo DF, Selmin OI. Flavonoids and cancer prevention: a review of the evidence. J Nutr Gerontol Geriatr. 2012;31(3):206–38.

    Article  PubMed  Google Scholar 

  74. Rossi M, et al. Flavonoids, proanthocyanidins, and cancer risk: a network of case-control studies from Italy. Nutr Cancer. 2010;62(7):871–7.

    Article  CAS  PubMed  Google Scholar 

  75. Ide R, et al. A prospective study of green tea consumption and oral cancer incidence in Japan. Ann Epidemiol. 2007;17(10):821–6.

    Article  PubMed  Google Scholar 

  76. Maggioni D, et al. Flavonoids in oral cancer prevention and therapy. Eur J Cancer Prev. 2015;24(6):517–28.

    Article  CAS  PubMed  Google Scholar 

  77. Chen S-F, et al. Quercetin suppresses drug-resistant spheres via the p38 MAPK–Hsp27 apoptotic pathway in oral cancer cells. PLoS One. 2012;7(11):e49275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiba Bawadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bawadi, H., Faris, “.AI. (2017). Role of Nutrition in Oral and Pharyngeal Cancers: From Etiology to Prevention. In: Al Moustafa, AE. (eds) Development of Oral Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-48054-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48054-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48053-4

  • Online ISBN: 978-3-319-48054-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics