Skip to main content

Neuroimaging of Paediatric Pain

  • Chapter
  • First Online:
Neuroimaging of Pain

Abstract

Pain during childhood can have a major impact on a child’s quality of life and development. However, given the changes in neurobiology, pharmacodynamics and pain assessment across this wide age range, from preverbal premature infants to adolescents, the question of how to effectively assess and manage pain in this population is complex. Recent research using neuroimaging techniques has advanced our understanding of paediatric pain. In this chapter, we discuss this research, including studies examining infant pain, pain in older children and the long-term effects of early life pain exposure. While there is a relative lack of neuroimaging research in paediatric pain compared with studies investigating adult pain, the early research in this field demonstrates the wealth of information that can be gained from the use of these techniques. As cortical activity is a prerequisite for pain perception, measuring pain-related brain activity may be particularly useful in children who cannot describe their pain experience. Neuroimaging studies in older children have highlighted both the vulnerability and plasticity of the developing nervous system. Understanding this plasticity may improve the treatment of chronic pain in children. Furthermore, neuroimaging studies provide an opportunity to examine how analgesics modulate neuronal activity and how this changes as the nervous system develops. In summary, neuroimaging provides a significant new direction in the complex field of paediatric pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organisation. Guidelines on the pharmacological treatment of persisting pain in children with medical illnesses. 2012.

    Google Scholar 

  2. Walker SM. Pain in children: recent advances and ongoing challenges. Brit J Anaesth. 2008;101(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  3. Schechter NL, Berde CB, Yaster M, editors. Pain in infants, children, and adolescents. Lippincott Williams & Wilkins; 2003.

    Google Scholar 

  4. Fitzgerald M. The development of nociceptive circuits. Nat Rev Neurosci. 2005;6(7):507–20.

    Article  CAS  PubMed  Google Scholar 

  5. Fitzgerald M, Walker SM. Infant pain management: a developmental neurobiological approach. Nat Clin Pract Neurol. 2009;5(1):35–50.

    Article  PubMed  Google Scholar 

  6. Schwaller F, Fitzgerald M. The consequences of pain in early life: injury-induced plasticity in developing pain pathways. Eur J Neurosci. 2014;39(3):344–52.

    Article  PubMed  PubMed Central  Google Scholar 

  7. McGrath PJ, Stevens BJ, Walker SM, Zempsky WT, editors. Oxford textbook of paediatric pain. Oxford: Oxford University Press; 2014.

    Google Scholar 

  8. Anand KJ, Stevens BJ, McGrath PJ, editors. Pain in neonates and infants, 3rd ed. Elsevier; 2007.

    Google Scholar 

  9. Stevens BJ, Zempsky WT. Prevalence and distribution of pain in children. In: McGrath PJ, Stevens BJ, Walker SM, Zempsky WT, editors. Oxford textbook of paediatric pain. Oxford: Oxford University Press; 2014. p. 12–9.

    Google Scholar 

  10. Anand KJ, International Evidence-Based Group for Neonatal Pain. Consensus statement for the prevention and management of pain in the newborn. Arch Pediatr Adolesc Med. 2001;155(2):173–80.

    Google Scholar 

  11. Carbajal R, Rousset A, Danan C, Coquery S, Nolent P, Ducrocq S, Saizou C, Lapillonne A, Granier M, Durand P, Lenclen R, Coursol A, Hubert P, de Saint Blanquat L, Boelle PY, Annequin D, Cimerman P, Anand KJ, Breart G. Epidemiology and treatment of painful procedures in neonates in intensive care units. JAMA. 2008;300(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  12. Johnston C, Barrington KJ, Taddio A, Carbajal R, Filion F. Pain in Canadian NICUs: have we improved over the past 12 years? Clin J Pain. 2011;27(3):225–32.

    Article  PubMed  Google Scholar 

  13. Kyololo OM, Stevens B, Gastaldo D, Gisore P. Procedural pain in neonatal units in Kenya. Arch Dis Child Fetal Neonatal Ed. 2014;99(6):F464–7.

    Article  PubMed  Google Scholar 

  14. Roofthooft DW, Simons SH, Anand KJ, Tibboel D, van Dijk M. Eight years later, are we still hurting newborn infants? Neonatology. 2014;105(3):218–26.

    Article  PubMed  Google Scholar 

  15. Simons SH, van Dijk M, Anand KS, Roofthooft D, van Lingen RA, Tibboel D. Do we still hurt newborn babies? A prospective study of procedural pain and analgesia in neonates. Arch Pediatr Adolesc Med. 2003;157(11):1058–64.

    Article  PubMed  Google Scholar 

  16. Stevens BJ, Abbott LK, Yamada J, Harrison D, Stinson J, Taddio A, Barwick M, Latimer M, Scott SD, Rashotte J, Campbell F, Finley GA, CIHR Team in Children’s Pain. Epidemiology and management of painful procedures in children in Canadian hospitals. Can Med Assoc J. 2011;183(7):E403–10.

    Google Scholar 

  17. Harrison D, Joly C, Chretien C, Cochrane S, Ellis J, Lamontagne C, Vaillancourt R. Pain prevalence in a pediatric hospital: raising awareness during pain awareness week. Pain Res Manag. 2014;19(1):e24–30.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Groenewald CB, Rabbitts JA, Schroeder DR, Harrison TE. Prevalence of moderate-severe pain in hospitalized children. Paediatr Anaesth. 2012;22(7):661–8.

    Article  PubMed  Google Scholar 

  19. Taylor EM, Boyer K, Campbell FA. Pain in hospitalized children: a prospective cross-sectional survey of pain prevalence, intensity, assessment and management in a Canadian pediatric teaching hospital. Pain Res Manag. 2008;13(1):25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Walker SM, Franck LS, Fitzgerald M, Myles J, Stocks J, Marlow N. Long-term impact of neonatal intensive care and surgery on somatosensory perception in children born extremely preterm. Pain. 2009;141(1–2):79–87.

    Article  PubMed  Google Scholar 

  21. Argoff CE. Recent management advances in acute postoperative pain. Pain Pract. 2014;14(5):477–87.

    PubMed  Google Scholar 

  22. Lavand’homme P. The progression from acute to chronic pain. Curr Opin Anaesthesiol. 2011;24(5):545–50.

    Article  PubMed  Google Scholar 

  23. Ashburn MA, Caplan RA, Carr DB, Connis RT, Ginsberg B, Green CR, Lema MJ, Nickinovich DG, Rice LJ, Anesthesiologists Amer Soc. Practice guidelines for acute pain management in the perioperative setting an updated report by the American Society of Anesthesiologists Task Force on acute pain management. Anesthesiology. 2012;116(2):248–73.

    Article  Google Scholar 

  24. Association of Paediatric Anaesthetists of Great Britain and Ireland. Good practice in postoperative and procedural pain management, 2nd ed. Paediatr Anaesth. 2012;22(Suppl 1):1–79.

    Google Scholar 

  25. Macintyre PE, Scott DA, Schug SA, Visser EJ, Walker SM, editors. Acute pain management: scientific evidence, 3rd ed. 2010.

    Google Scholar 

  26. NHS Choices. The NHS vaccination schedule. http://www.nhs.uk/conditions/vaccinations/pages/vaccination-schedule-age-checklist.aspx. Accessed 17 Aug 2015.

  27. U. S. Department of Health and Human Services Recommended Immunization Schedules for Persons Aged 0 Through 18 Years, United States 2015. http://www.cdc.gov/vaccines/schedules/downloads/child/0-18yrs-child-combined-schedule.pdf. Accessed 17 Aug 2015.

  28. Taddio A, Ipp M, Thivakaran S, Jamal A, Parikh C, Smart S, Sovran J, Stephens D, Katz J. Survey of the prevalence of immunization non-compliance due to needle fears in children and adults. Vaccine. 2012;30(32):4807–12.

    Article  PubMed  Google Scholar 

  29. Taddio A, Appleton M, Bortolussi R, Chambers C, Dubey V, Halperin S, Hanrahan A, Ipp M, Lockett D, MacDonald N, Midmer D, Mousmanis P, Palda V, Pielak K, Riddell RP, Rieder M, Scott J, Shah V. Reducing the pain of childhood vaccination: an evidence-based clinical practice guideline (summary). CMAJ. 2010;182(18):1989–95.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Taddio A, Chambers CT, Halperin SA, Ipp M, Lockett D, Rieder MJ, Shah V. Inadequate pain management during routine childhood immunizations: the nerve of it. Clin Ther. 2009;31(Suppl 2):S152–67.

    Article  PubMed  CAS  Google Scholar 

  31. King S, Chambers CT, Huguet A, MacNevin RC, McGrath PJ, Parker L, MacDonald AJ. The epidemiology of chronic pain in children and adolescents revisited: a systematic review. Pain. 2011;152(12):2729–38.

    Article  PubMed  Google Scholar 

  32. Hicks CL, von Baeyer CL, Spafford PA, van Korlaar I, Goodenough B. The faces pain scale-revised: toward a common metric in pediatric pain measurement. Pain. 2001;93(2):173–83.

    Article  CAS  PubMed  Google Scholar 

  33. von Baeyer CL. Self-report: the primary source in assessment after infancy. In: McGrath PJ, Stevens BJ, Walker SM, Zempsky WT, editors. Oxford textbook of paediatric pain. Oxford: Oxford University Press; 2014. p. 370–8.

    Google Scholar 

  34. Lagercrantz H, Changeux JP. Basic consciousness of the newborn. Semin Perinatol. 2010;34(3):201–6.

    Article  PubMed  Google Scholar 

  35. Wilkinson DJ, Savulescu J, Slater R. Sugaring the pill: ethics and uncertainties in the use of sucrose for newborn infants. Arch Pediatr Adolesc Med. 2012;166(7):629–33.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Merskey H, Bogduk N IASP Task Force on Taxonomy. http://www.iasp-pain.org/Taxonomy. Accessed 21 Nov 2015.

  37. Unruh AM, McGrath PJ. History of pain in children. In: McGrath PJ, Stevens BJ, Walker SM, Zempsky WT, editors. Oxford textbook of paediatric pain. Oxford: Oxford University Press; 2014. p. 3–11.

    Google Scholar 

  38. Anand KJ, Sippell WG, Aynsley-Green A. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet. 1987;1(8527):243–8.

    Article  CAS  PubMed  Google Scholar 

  39. Anand KJ, Sippell WG, Schofield NM, Aynsley-Green A. Does halothane anaesthesia decrease the metabolic and endocrine stress responses of newborn infants undergoing operation? Br Med J (Clin Res Ed). 1988;296(6623):668–72.

    Article  CAS  Google Scholar 

  40. Anand KJ, Hansen DD, Hickey PR. Hormonal-metabolic stress responses in neonates undergoing cardiac surgery. Anesthesiology. 1990;73(4):661–70.

    Article  CAS  PubMed  Google Scholar 

  41. Lawson J. Letters. Birth 1986:124–5.

    Google Scholar 

  42. Rovner S. Surgery without anesthesia: can preemies feel pain? The Washington Post. 1986.

    Google Scholar 

  43. Lee GY, Stevens BJ. Neonatal and infant pain assessment. In: McGrath PJ, Stevens BJ, Walker SM, Zempsky WT, editors. Oxford textbook of paediatric pain. Oxford: Oxford University Press; 2014. p. 353–69.

    Google Scholar 

  44. Gibbins S, Stevens BJ, Yamada J, Dionne K, Campbell-Yeo M, Lee G, Caddell K, Johnston C, Taddio A. Validation of the premature infant pain profile-revised (PIPP-R). Early Hum Dev. 2014;90(4):189–93.

    Article  PubMed  Google Scholar 

  45. Stevens B, Johnston C, Petryshen P, Taddio A. Premature infant pain profile: development and initial validation. Clin J Pain. 1996;12(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  46. Stevens BJ, Gibbins S, Yamada J, Dionne K, Lee G, Johnston C, Taddio A. The premature infant pain profile-revised (PIPP-R) initial validation and feasibility. Clin J Pain. 2014;30(3):238–43.

    Article  PubMed  Google Scholar 

  47. Grunau RVE, Craig KD. Pain expression in neonates—facial action and cry. Pain. 1987;28(3):395–410.

    Article  CAS  PubMed  Google Scholar 

  48. Lawrence J, Alcock D, McGrath P, Kay J, MacMurray SB, Dulberg C. The development of a tool to assess neonatal pain. Neonatal Netw. 1993;12(6):59–66.

    CAS  PubMed  Google Scholar 

  49. Debillon T, Zupan V, Ravault N, Magny JF, Dehan M. Development and initial validation of the EDIN scale, a new tool for assessing prolonged pain in preterm infants. Arch Dis Child. 2001;85(1):F36–40.

    Article  CAS  Google Scholar 

  50. Ambuel B, Hamlett KW, Marx CM, Blumer JL. Assessing distress in pediatric intensive care environments: the COMFORT scale. J Pediatr Psychol. 1992;17(1):95–109.

    Article  CAS  PubMed  Google Scholar 

  51. Merkel SI, Voepel-Lewis T, Shayevitz JR, Malviya S. The FLACC: a behavioral scale for scoring postoperative pain in young children. Pediatr Nurs. 1997;23(3):293–7.

    CAS  PubMed  Google Scholar 

  52. Breau LM, Finley GA, McGrath PJ, Camfield CS. Validation of the non-communicating children’s pain checklist-postoperative version. Anesthesiology. 2002;96(3):528–35.

    Article  PubMed  Google Scholar 

  53. Hunt A, Goldman A, Seers K, Crichton N, Mastroyannopoulou K, Moffat V, Oulton K, Brady M. Clinical validation of the paediatric pain profile. Dev Med Child Neurol. 2004;46(1):9–18.

    Article  PubMed  Google Scholar 

  54. Malviya S, Voepel-Lewis T, Burke C, Merkel S, Tait AR. The revised FLACC observational pain tool: improved reliability and validity for pain assessment in children with cognitive impairment. Paediatr Anaesth. 2006;16(3):258–65.

    Article  PubMed  Google Scholar 

  55. Thompson KL, Varni JW, Hanson V. Comprehensive assessment of pain in juvenile rheumatoid-arthritis—an empirical-model. J Pediatr Psychol. 1987;12(2):241–55.

    Article  CAS  PubMed  Google Scholar 

  56. Varni JW, Thompson KL, Hanson V. The Varni Thompson pediatric pain questionnaire. 1. Chronic musculoskeletal pain in juvenile rheumatoid-arthritis. Pain. 1987;28(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  57. Eccleston C, Jordan A, McCracken LM, Sleed M, Connell H, Clinch J. The bath adolescent pain questionnaire (BAPQ): development and preliminary psychometric evaluation of an instrument to assess the impact of chronic pain on adolescents. Pain. 2005;118(1–2):263–70.

    Article  PubMed  Google Scholar 

  58. Jibb LA, Stevens BJ, Nathan PC, Seto E, Cafazzo JA, Stinson JN. A smartphone-based pain management app for adolescents with cancer: establishing system requirements and a pain care algorithm based on literature review, interviews, and consensus. JMIR Res Protoc. 2014;3(1):e15.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Stinson JN, Jibb LA, Nguyen C, Nathan PC, Maloney AM, Dupuis LL, Gerstle JT, Alman B, Hopyan S, Strahlendorf C, Portwine C, Johnston DL, Orr M. Development and testing of a multidimensional iPhone pain assessment application for adolescents with cancer. J Med Internet Res. 2013;15(3):e51.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lee SJ, Ralston HJP, Drey EA, Partridge JC, Rosen MA. Fetal pain—a systematic multidisciplinary review of the evidence. JAMA. 2005;294(8):947–54.

    Article  CAS  PubMed  Google Scholar 

  61. Friauf E, McConnell SK, Shatz CJ. Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex. J Neurosci. 1990;10(8):2601–13.

    CAS  PubMed  Google Scholar 

  62. Kanold PO, Luhmann HJ. The subplate and early cortical circuits. Annu Rev Neurosci. 2010;33:23–48.

    Article  CAS  PubMed  Google Scholar 

  63. Kostovic I, Rakic P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol. 1990;297(3):441–70.

    Article  CAS  PubMed  Google Scholar 

  64. Kanold PO, Kara P, Reid RC, Shatz CJ. Role of subplate neurons in functional maturation of visual cortical columns. Science. 2003;301(5632):521–5.

    Article  CAS  PubMed  Google Scholar 

  65. Tolner EA, Sheikh A, Yukin AY, Kaila K, Kanold PO. Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. J Neurosci. 2012;32(2):692–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hartley C, Berthouze L, Mathieson SR, Boylan GB, Rennie JM, Marlow N, Farmer SF. Long-range temporal correlations in the EEG bursts of human preterm babies. PLoS One. 2012;7(2):e31543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Andre M, Lamblin MD, d’Allest AM, Curzi-Dascalova L, Moussalli-Salefranque F, Tich SNT, Vecchierini-Blineau MF, Wallois F, Walls-Esquivel E, Plouin P. Electroencephalography in premature and full-term infants. Developmental features and glossary. Neurophysiol Clin. 2010;40(2):59–124.

    Google Scholar 

  68. Niemarkt HJ, Andriessen P, Peters CH, Pasman JW, Zimmermann LJ, Bambang Oetomo S. Quantitative analysis of maturational changes in EEG background activity in very preterm infants with a normal neurodevelopment at 1 year of age. Early Hum Dev. 2010;86(4):219–24.

    Article  CAS  PubMed  Google Scholar 

  69. Fabrizi L, Slater R, Worley A, Meek J, Boyd S, Olhede S, Fitzgerald M. A shift in sensory processing that enables the developing human brain to discriminate touch from pain. Curr Biol. 2011;21(18):1552–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Milh M, Kaminska A, Huon C, Lapillonne A, Ben-Ari Y, Khazipov R. Rapid cortical oscillations and early motor activity in premature human neonate. Cereb Cortex. 2007;17(7):1582–94.

    Article  PubMed  Google Scholar 

  71. Chipaux M, Colonnese MT, Mauguen A, Fellous L, Mokhtari M, Lezcano O, Milh M, Dulac O, Chiron C, Khazipov R, Kaminska A. Auditory stimuli mimicking ambient sounds drive temporal “delta-brushes” in premature infants. PLoS One. 2013;8(11):e79028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Colonnese MT, Kaminska A, Minlebaev M, Milh M, Bloem B, Lescure S, Moriette G, Chiron C, Ben-Ari Y, Khazipov R. A conserved switch in sensory processing prepares developing neocortex for vision. Neuron. 2010;67(3):480–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bartocci M, Bergqvist LL, Lagercrantz H, Anand KJ. Pain activates cortical areas in the preterm newborn brain. Pain. 2006;122(1–2):109–17.

    Article  PubMed  Google Scholar 

  74. Slater R, Cantarella A, Gallella S, Worley A, Boyd S, Meek J, Fitzgerald M. Cortical pain responses in human infants. J Neurosci. 2006;26(14):3662–6.

    Article  CAS  PubMed  Google Scholar 

  75. Limperopoulos C, Gauvreau KK, O’Leary H, Moore M, Bassan H, Eichenwald EC, Soul JS, Ringer SA, Di Salvo DN, du Plessis AJ. Cerebral hemodynamic changes during intensive care of preterm infants. Pediatrics. 2008;122(5):E1006–13.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Slater R, Worley A, Fabrizi L, Roberts S, Meek J, Boyd S, Fitzgerald M. Evoked potentials generated by noxious stimulation in the human infant brain. Eur J Pain. 2010;14(3):321–6.

    Article  PubMed  Google Scholar 

  77. Greenspan JD, McGillis SL. Stimulus features relevant to the perception of sharpness and mechanically evoked cutaneous pain. Somatosens Mot Res. 1991;8(2):137–47.

    Article  CAS  PubMed  Google Scholar 

  78. Iannetti GD, Baumgartner U, Tracey I, Treede RD, Magerl W. Pinprick-evoked brain potentials: a novel tool to assess central sensitization of nociceptive pathways in humans. J Neurophysiol. 2013;110(5):1107–16.

    Article  CAS  PubMed  Google Scholar 

  79. Goksan S, Hartley C, Emery F, Cockrill N, Poorun R, Moultrie F, Rogers R, Campbell J, Sanders M, Adams E, Clare S, Jenkinson M, Tracey I, Slater R. fMRI reveals neural activity overlap between adult and infant pain. eLife. 2015;4. doi:10.7554/eLife.06356.

  80. Hartley C, Goksan S, Poorun R, Brotherhood K, Schmidt Mellado G, Moultrie F, Rogers R, Adams E, Slater R. The relationship between nociceptive brain activity, spinal reflex withdrawal and behaviour in newborn infants. Sci Rep. 2015;5:12519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Williams G, Fabrizi L, Meek J, Jackson D, Tracey I, Robertson N, Slater R, Fitzgerald M. Functional magnetic resonance imaging can be used to explore tactile and nociceptive processing in the infant brain. Acta Paediatr. 2015;104(2):158–66.

    Article  PubMed  Google Scholar 

  82. Kahnt T, Heinzle J, Park SQ, Haynes JD. The neural code of reward anticipation in human orbitofrontal cortex. Proc Natl Acad Sci U S A. 2010;107(13):6010–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Simons LE, Moulton EA, Linnman C, Carpino E, Becerra L, Borsook D. The human amygdala and pain: evidence from neuroimaging. Hum Brain Mapp. 2014;35(2):527–38.

    Article  PubMed  Google Scholar 

  84. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277(5328):968–71.

    Article  CAS  PubMed  Google Scholar 

  85. Verriotis M, Fabrizi L, Lee A, Ledwidge S, Meek J, Fitzgerald M. Cortical activity evoked by inoculation needle prick in infants up to one-year old. Pain. 2015;156(2):222–30.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ranger M, Johnston CC, Anand KJS. Current controversies regarding pain assessment in neonates. Semin Perinatol. 2007;31(5):283–8.

    Article  PubMed  Google Scholar 

  87. Craig KD, Whitfield MF, Grunau RVE, Linton J, Hadjistavropoulos HD. Pain in the preterm neonate—behavioral and physiological indexes. Pain. 1993;52(3):287–99.

    Article  CAS  PubMed  Google Scholar 

  88. Johnston CC, Stevens BJ, Franck LS, Jack A, Stremler R, Platt R. Factors explaining lack of response to heel stick in preterm newborns. J Obstet Gynecol Neonatal Nurs. 1999;28(6):587–94.

    Article  CAS  PubMed  Google Scholar 

  89. Gibbins S, Stevens B, McGrath PJ, Yamada J, Beyene J, Breau L, Camfield C, Finley A, Franck L, Johnston C, Howlett A, McKeever P, O’Brien K, Ohlsson A. Comparison of pain responses in infants of different gestational ages. Neonatology. 2008;93(1):10–8.

    Article  PubMed  Google Scholar 

  90. Johnston CC, Stevens BJ. Experience in a neonatal intensive care unit affects pain response. Pediatrics. 1996;98(5):925–30.

    CAS  PubMed  Google Scholar 

  91. Slater R, Cantarella A, Franck L, Meek J, Fitzgerald M. How well do clinical pain assessment tools reflect pain in infants? PLoS Med. 2008;5(6):e129.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Stevens B, Yamada J, Lee GY, Ohlsson A. Sucrose for analgesia in newborn infants undergoing painful procedures. Cochrane Database Syst Rev. 1:CD001069. doi:10.1002/14651858.CD001069.pub4.

  93. Slater R, Cornelissen L, Fabrizi L, Patten D, Yoxen J, Worley A, Boyd S, Meek J, Fitzgerald M. Oral sucrose as an analgesic drug for procedural pain in newborn infants: a randomised controlled trial. Lancet. 2010;376(9748):1225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007;55(3):377–91.

    Article  CAS  PubMed  Google Scholar 

  95. Hartley C, Slater R. Neurophysiological measures of nociceptive brain activity in the newborn infant—the next steps. Acta Paediatr. 2014;103(3):238–42.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cornelissen L, Fabrizi L, Patten D, Worley A, Meek J, Boyd S, Slater R, Fitzgerald M. Postnatal temporal, spatial and modality tuning of nociceptive cutaneous flexion reflexes in human infants. PLoS One. 2013;8(10):e76470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science. 1996;274(5290):1133–8.

    Article  CAS  PubMed  Google Scholar 

  98. Kilb W, Kirischuk S, Luhmann HJ. Electrical activity patterns and the functional maturation of the neocortex. Eur J Neurosci. 2011;34(10):1677–86.

    Article  PubMed  Google Scholar 

  99. Beggs S, Torsney C, Drew LJ, Fitzgerald M. The postnatal reorganization of primary afferent input and dorsal horn cell receptive fields in the rat spinal cord is an activity-dependent process. Eur J Neurosci. 2002;16(7):1249–58.

    Article  PubMed  Google Scholar 

  100. Koch SC, Fitzgerald M. Activity-dependent development of tactile and nociceptive spinal cord circuits. Ann N Y Acad Sci. 2013;1279:97–102.

    Article  CAS  PubMed  Google Scholar 

  101. Waldenstrom A, Thelin J, Thimansson E, Levinsson A, Schouenborg J. Developmental learning in a pain-related system: evidence for a cross-modality mechanism. J Neurosci. 2003;23(20):7719–25.

    PubMed  Google Scholar 

  102. Granmo M, Petersson P, Schouenborg J. Action-based body maps in the spinal cord emerge from a transitory floating organization. J Neurosci. 2008;28(21):5494–503.

    Article  CAS  PubMed  Google Scholar 

  103. Andrews K, Fitzgerald M. The cutaneous withdrawal reflex in human neonates: sensitization, receptive fields, and the effects of contralateral stimulation. Pain. 1994;56(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  104. Fitzgerald M, Shaw A, MacIntosh N. Postnatal development of the cutaneous flexor reflex: comparative study of preterm infants and newborn rat pups. Dev Med Child Neurol. 1988;30(4):520–6.

    Article  CAS  PubMed  Google Scholar 

  105. Andrews K, Fitzgerald M. Cutaneous flexion reflex in human neonates: a quantitative study of threshold and stimulus-response characteristics after single and repeated stimuli. Dev Med Child Neurol. 1999;41(10):696–703.

    Article  CAS  PubMed  Google Scholar 

  106. Holsti L, Grunau RE, Oberlander TF, Whitfield MF. Prior pain induces heightened motor responses during clustered care in preterm infants in the NICU. Early Hum Dev. 2005;81(3):293–302.

    Article  PubMed  Google Scholar 

  107. Taddio A, Katz J, Ilersich AL, Koren G. Effect of neonatal circumcision on pain response during subsequent routine vaccination. Lancet. 1997;349(9052):599–603.

    Article  CAS  PubMed  Google Scholar 

  108. Peters JW, Schouw R, Anand KJ, van Dijk M, Duivenvoorden HJ, Tibboel D. Does neonatal surgery lead to increased pain sensitivity in later childhood? Pain. 2005;114(3):444–54.

    Article  PubMed  Google Scholar 

  109. Taddio A, Shah V, Gilbert-MacLeod C, Katz J. Conditioning and hyperalgesia in newborns exposed to repeated heel lances. JAMA. 2002;288(7):857–61.

    Article  PubMed  Google Scholar 

  110. Ren K, Anseloni V, Zou SP, Wade EB, Novikova SI, Ennis M, Traub RJ, Gold MS, Dubner R, Lidow MS. Characterization of basal and re-inflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflammatory insult. Pain. 2004;110(3):588–96.

    Article  CAS  PubMed  Google Scholar 

  111. Hermann C, Hohmeister J, Demirakca S, Zohsel K, Flor H. Long-term alteration of pain sensitivity in school-aged children with early pain experiences. Pain. 2006;125(3):278–85.

    Article  PubMed  Google Scholar 

  112. Wollgarten-Hadamek I, Hohmeister J, Demirakca S, Zohsel K, Flor H, Hermann C. Do burn injuries during infancy affect pain and sensory sensitivity in later childhood? Pain. 2009;141(1–2):165–72.

    Article  PubMed  Google Scholar 

  113. Schmelzle-Lublecki BM, Campbell KAA, Howard RH, Franck L, Fitzgerald M. Long-term consequences of early infant injury and trauma upon somatosensory processing. Eur J Pain. 2007;11(7):799–809.

    Article  Google Scholar 

  114. Slater R, Fabrizi L, Worley A, Meek J, Boyd S, Fitzgerald M. Premature infants display increased noxious-evoked neuronal activity in the brain compared to healthy age-matched term-born infants. NeuroImage. 2010;52(2):583–9.

    Article  PubMed  Google Scholar 

  115. Hohmeister J, Kroll A, Wollgarten-Hadamek I, Zohsel K, Demirakca S, Flor H, Hermann C. Cerebral processing of pain in school-aged children with neonatal nociceptive input: an exploratory fMRI study. Pain. 2010;150(2):257–67.

    Article  PubMed  Google Scholar 

  116. Poorun R, Hartley C, Goksan S, Worley A, Boyd S, Cornelissen L, Berde C, Rogers R, Ali T, Slater R. Electroencephalography during general anaesthesia differs between term-born and premature-born children. Clin Neurophysiol. 2015. doi:10.1016/j.clinph.2015.10.041.

  117. de Jong M, Verhoeven M, van Baar AL. School outcome, cognitive functioning, and behaviour problems in moderate and late preterm children and adults: a review. Semin Fetal Neonat M. 2012;17(3):163–9.

    Article  Google Scholar 

  118. Delobel-Ayoub M, Arnaud C, White-Koning M, Casper C, Pierrat V, Garel M, Burguet A, Roze JC, Matis J, Picaud JC, Kaminski M, Larroque B, Grp ES. Behavioral problems and cognitive performance at 5 years of age after very preterm birth: the EPIPAGE study. Pediatrics. 2009;123(6):1485–92.

    Article  PubMed  Google Scholar 

  119. Johnson S, Hennessy E, Smith R, Trikic R, Wolke D, Marlow N. Academic attainment and special educational needs in extremely preterm children at 11 years of age: the EPICure study. Arch Dis Child-Fetal. 2009;94(4):F283–9.

    Article  CAS  Google Scholar 

  120. Marret S, Marchand-Martin L, Picaud JC, Hascoet JM, Arnaud C, Roze JC, Truffert P, Larroque B, Kaminski M, Ancei PY, Grp ES. Brain injury in very preterm children and neurosensory and cognitive disabilities during childhood: the EPIPAGE cohort study. PLoS One. 2013;8(5):e62683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Johnson S, Hollis C, Kochhar P, Hennessy E, Wolke D, Marlow N. Psychiatric disorders in extremely preterm children: longitudinal finding at age 11 years in the EPICure study. J Am Acad Child Psy. 2010;49(5):453–63.

    Google Scholar 

  122. Ment LR, Vohr BR. Preterm birth and the developing brain. Lancet Neurol. 2008;7(5):378–9.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Counsell SJ, Boardman JP. Differential brain growth in the infant born preterm: current knowledge and future developments from brain imaging. Semin Fetal Neonatal Med. 2005;10(5):403–10.

    Article  PubMed  Google Scholar 

  124. Anand KJ, Garg S, Rovnaghi CR, Narsinghani U, Bhutta AT, Hall RW. Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr Res. 2007;62(3):283–90.

    Article  CAS  PubMed  Google Scholar 

  125. Smith GC, Gutovich J, Smyser C, Pineda R, Newnham C, Tjoeng TH, Vavasseur C, Wallendorf M, Neil J, Inder T. Neonatal intensive care unit stress is associated with brain development in preterm infants. Ann Neurol. 2011;70(4):541–9.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Grunau RE. Neonatal pain in very preterm infants: long-term effects on brain, neurodevelopment and pain reactivity. Rambam Maimonides Med J. 2013;4(4):e0025.

    PubMed  PubMed Central  Google Scholar 

  127. Ranger M, Grunau RE. Early repetitive pain in preterm infants in relation to the developing brain. Pain Manag. 2014;4(1):57–67.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zwicker JG, Grunau RE, Adams E, Chau V, Brant R, Poskitt KJ, Synnes A, Miller SP. Score for neonatal acute physiology-II and neonatal pain predict corticospinal tract development in premature newborns. Pediatr Neurol. 2013;48(2):123–9 e121.

    Google Scholar 

  129. Brummelte S, Grunau RE, Chau V, Poskitt KJ, Brant R, Vinall J, Gover A, Synnes AR, Miller SP. Procedural pain and brain development in premature newborns. Ann Neurol. 2012;71(3):385–96.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Ranger M, Chau CM, Garg A, Woodward TS, Beg MF, Bjornson B, Poskitt K, Fitzpatrick K, Synnes AR, Miller SP, Grunau RE. Neonatal pain-related stress predicts cortical thickness at age 7 years in children born very preterm. PLoS One. 2013;8(10):e76702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ranger M, Zwicker JG, Chau CM, Park MT, Chakravarthy MM, Poskitt K, Miller SP, Bjornson BH, Tam EW, Chau V, Synnes AR, Grunau RE. Neonatal pain and infection relate to smaller cerebellum in very preterm children at school age. J Pediatr. 2015;167(2):292–8 e291.

    Google Scholar 

  132. Vinall J, Miller SP, Bjornson BH, Fitzpatrick KP, Poskitt KJ, Brant R, Synnes AR, Cepeda IL, Grunau RE. Invasive procedures in preterm children: brain and cognitive development at school age. Pediatrics. 2014;133(3):412–21.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Doesburg SM, Chau CM, Cheung TP, Moiseev A, Ribary U, Herdman AT, Miller SP, Cepeda IL, Synnes A, Grunau RE. Neonatal pain-related stress, functional cortical activity and visual-perceptual abilities in school-age children born at extremely low gestational age. Pain. 2013;154(10):1946–52.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Als H, Duffy FH, McAnulty GB, Rivkin MJ, Vajapeyam S, Mulkern RV, Warfield SK, Huppi PS, Butler SC, Conneman N, Fischer C, Eichenwald EC. Early experience alters brain function and structure. Pediatrics. 2004;113(4):846–57.

    Article  PubMed  Google Scholar 

  135. Milgrom J, Newnham C, Anderson PJ, Doyle LW, Gemmill AW, Lee K, Hunt RW, Bear M, Inder T. Early sensitivity training for parents of preterm infants: impact on the developing brain. Pediatr Res. 2010;67(3):330–5.

    Article  PubMed  Google Scholar 

  136. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387(2):167–78.

    Article  CAS  PubMed  Google Scholar 

  137. Paus T. Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn. 2010;72(1):26–35.

    Article  PubMed  Google Scholar 

  138. Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A. Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull. 2001;54(3):255–66.

    Article  CAS  PubMed  Google Scholar 

  139. Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO. A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol. 1994;51(9):874–87.

    Article  CAS  PubMed  Google Scholar 

  140. Campbell IG, Feinberg I. Longitudinal trajectories of non-rapid eye movement delta and theta EEG as indicators of adolescent brain maturation. Proc Natl Acad Sci U S A. 2009;106(13):5177–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Clarke AR, Barry RJ, McCarthy R, Selikowitz M. Age and sex effects in the EEG: development of the normal child. Clin Neurophysiol. 2001;112(5):806–14.

    Article  CAS  PubMed  Google Scholar 

  142. Gasser T, Verleger R, Bacher P, Sroka L. Development of the eeg of school-age children and adolescents. I. Analysis of band power. Electroen Clin Neuro. 1988;69(2):91–9.

    Google Scholar 

  143. Ambrosini A, Schoenen J. The electrophysiology of migraine. Curr Opin Neurol. 2003;16(3):327–31.

    Article  PubMed  Google Scholar 

  144. Oelkers-Ax R, Bender S, Just U, Pfuller U, Parzer P, Resch F, Weisbrod M. Pattern-reversal visual-evoked potentials in children with migraine and other primary headache: evidence for maturation disorder? Pain. 2004;108(3):267–75.

    Article  PubMed  Google Scholar 

  145. Oelkers-Ax R, Parzer P, Resch F, Weisbrod M. Maturation of early visual processing investigated by a pattern-reversal habituation paradigm is altered in migraine. Cephalalgia. 2005;25(4):280–9.

    Article  CAS  PubMed  Google Scholar 

  146. Siniatchkin M, Kropp P, Neumann M, Gerber W, Stephani U. Intensity dependence of auditory evoked cortical potentials in migraine families. Pain. 2000;85(1–2):247–54.

    Article  CAS  PubMed  Google Scholar 

  147. Buodo G, Sarlo M, Battistella PA, Naccarella C, Palomba D. Event-related potentials to emotional stimuli in migrainous children. J Child Neurol. 2011;26(12):1508–15.

    Article  PubMed  Google Scholar 

  148. Siniatchkin M, Jonas A, Baki H, van Baalen A, Gerber WD, Stephani U. Developmental changes of the contingent negative variation in migraine and healthy children. J Headache Pain. 2010;11(2):105–13.

    Article  PubMed  Google Scholar 

  149. Ozkan M, Teber ST, Deda G. Electroencephalogram variations in pediatric migraines and tension-type headaches. Pediatr Neurol. 2012;46(3):154–7.

    Article  PubMed  Google Scholar 

  150. Zohsel K, Hohmeister J, Oelkers-Ax R, Flor H, Hermann C. Quantitative sensory testing in children with migraine: preliminary evidence for enhanced sensitivity to painful stimuli especially in girls. Pain. 2006;123(1–2):10–8.

    Article  PubMed  Google Scholar 

  151. Zohsel K, Hohmeister J, Flor H, Hermann C. Altered pain processing in children with migraine: an evoked potential study. Eur J Pain. 2008;12(8):1090–101.

    Article  PubMed  Google Scholar 

  152. Hermann C, Zohsel K, Hohmeister J, Flor H. Cortical correlates of an attentional bias to painful and innocuous somatic stimuli in children with recurrent abdominal pain. Pain. 2008;136(3):397–406.

    Article  PubMed  Google Scholar 

  153. Rocca MA, Messina R, Colombo B, Falini A, Comi G, Filippi M. Structural brain MRI abnormalities in pediatric patients with migraine. J Neurol. 2014;261(2):350–7.

    Article  PubMed  Google Scholar 

  154. Stewart WF, Wood C, Reed ML, Roy J, Lipton RB, Group AA. Cumulative lifetime migraine incidence in women and men. Cephalalgia. 2008;28(11):1170–8.

    Google Scholar 

  155. Faria V, Erpelding N, Lebel A, Johnson A, Wolff R, Fair D, Burstein R, Becerra L, Borsook D. The migraine brain in transition: girls vs boys. Pain. 2015;156(11):2212–21.

    Article  PubMed  Google Scholar 

  156. Harris EJ, Schimka KE, Carlson RM. Complex regional pain syndrome of the pediatric lower extremity: a retrospective review. J Am Podiatr Med Assoc. 2012;102(2):99–104.

    Article  PubMed  Google Scholar 

  157. Low AK, Ward K, Wines AP. Pediatric complex regional pain syndrome. J Pediatr Orthop. 2007;27(5):567–72.

    Article  PubMed  Google Scholar 

  158. Lebel A, Becerra L, Wallin D, Moulton EA, Morris S, Pendse G, Jasciewicz J, Stein M, Aiello-Lammens M, Grant E, Berde C, Borsook D. fMRI reveals distinct CNS processing during symptomatic and recovered complex regional pain syndrome in children. Brain. 2008;131(Pt 7):1854–79.

    Article  CAS  PubMed  Google Scholar 

  159. Linnman C, Becerra L, Lebel A, Berde C, Grant PE, Borsook D. Transient and persistent pain induced connectivity alterations in pediatric complex regional pain syndrome. PLoS One. 2013;8(3):e57205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Erpelding N, Sava S, Simons LE, Lebel A, Serrano P, Becerra L, Borsook D. Habenula functional resting-state connectivity in pediatric CRPS. J Neurophysiol. 2014;111(2):239–47.

    Article  PubMed  Google Scholar 

  161. Becerra L, Sava S, Simons LE, Drosos AM, Sethna N, Berde C, Lebel AA, Borsook D. Intrinsic brain networks normalize with treatment in pediatric complex regional pain syndrome. Neuroimage Clin. 2014;6:347–69.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Simons LE, Pielech M, Erpelding N, Linnman C, Moulton E, Sava S, Lebel A, Serrano P, Sethna N, Berde C, Becerra L, Borsook D. The responsive amygdala: treatment-induced alterations in functional connectivity in pediatric complex regional pain syndrome. Pain. 2014;155(9):1727–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Erpelding N, Simons L, Lebel A, Serrano P, Pielech M, Prabhu S, Becerra L, Borsook D. Rapid treatment-induced brain changes in pediatric CRPS. Brain Struct Funct. 2014 (Epub ahead of print).

    Google Scholar 

  164. Tracey I. Imaging pain. Br J Anaesth. 2008;101(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  165. Lorenz J, Beck H, Bromm B. Cognitive performance, mood and experimental pain before and during morphine-induced analgesia in patients with chronic non-malignant pain. Pain. 1997;73(3):369–75.

    Article  CAS  PubMed  Google Scholar 

  166. Truini A, Panuccio G, Galeotti F, Maluccio MR, Sartucci F, Avoli M, Cruccu G. Laser-evoked potentials as a tool for assessing the efficacy of antinociceptive drugs. Eur J Pain. 2010;14(2):222–5.

    Article  CAS  PubMed  Google Scholar 

  167. Hartley C, Moultrie F, Juszczak E, Adams E, Slater R. Protocol 15PRT/5747:A blinded randomised placebo-controlled trial investigating the efficacy of morphine analgesia for procedural pain in infants—ISRCTN82342359. Lancet. 2016. http://www.thelancet.com/doi/story/10.1016/html.2016.01.19.2536.

  168. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. An fMRI-based neurologic signature of physical pain. N Engl J Med. 2013;368(15):1388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Duff EP, Vennart W, Wise RG, Howard MA, Harris RE, Lee M, Wartolowska K, Wanigasekera V, Wilson FJ, Whitlock M, Tracey I, Woolrich MW, Smith SM. Learning to identify CNS drug action and efficacy using multistudy fMRI data. Sci Transl Med. 2015;7(274):274ra216.

    Google Scholar 

  170. Johnston C, Campbell-Yeo M, Fernandes A, Inglis D, Streiner D, Zee R. Skin-to-skin care for procedural pain in neonates. Cochrane Database Syst Rev. 2014;1:CD008435. doi:10.1002/14651858.CD008435.pub2.

  171. Shah PS, Herbozo C, Aliwalas LL, Shah VS. Breastfeeding or breast milk for procedural pain in neonates. Cochrane Database Syst Rev. 2012;12:CD004950. doi:10.1002/14651858.CD004950.pub3.

  172. Pillai Riddell RR, Racine NM, Turcotte K, Uman LS, Horton RE, Din Osmun L, Ahola Kohut S, Hillgrove Stuart J, Stevens B, Gerwitz-Stern A. Non-pharmacological management of infant and young child procedural pain. Cochrane Database Syst Rev. 2011;(10):CD006275. doi:10.1002/14651858.CD006275.pub2.

  173. Gibbins S, Stevens B, Hodnett E, Pinelli J, Ohlsson A, Darlington G. Efficacy and safety of sucrose for procedural pain relief in preterm and term neonates. Nurs Res. 2002;51(6):375–82.

    Article  PubMed  Google Scholar 

  174. Stevens B, Johnston C, Franck L, Petryshen P, Jack A, Foster G. The efficacy of developmentally sensitive interventions and sucrose for relieving procedural pain in very low birth weight neonates. Nurs Res. 1999;48(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  175. Chapin H, Bagarinao E, Mackey S. Real-time fMRI applied to pain management. Neurosci Lett. 2012;520(2):174–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sun L. Early childhood general anaesthesia exposure and neurocognitive development. Br J Anaesth. 2010;105(Suppl 1):i61–8.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Marchant N, Sanders R, Sleigh J, Vanhaudenhuyse A, Bruno MA, Brichant JF, Laureys S, Bonhomme V. How electroencephalography serves the anesthesiologist. Clin EEG Neurosci. 2014;45(1):22–32.

    Article  PubMed  Google Scholar 

  178. Palanca BJ, Mashour GA, Avidan MS. Processed electroencephalogram in depth of anesthesia monitoring. Curr Opin Anaesthesiol. 2009;22(5):553–9.

    Article  PubMed  Google Scholar 

  179. Davidson AJ. Monitoring the anaesthetic depth in children—an update. Curr Opin Anaesthesiol. 2007;20(3):236–43.

    Article  PubMed  Google Scholar 

  180. Cornelissen L, Kim SE, Purdon PL, Brown EN, Berde CB. Age-dependent electroencephalogram (EEG) patterns during sevoflurane general anesthesia in infants. eLife. 2015;4:e06513.

    Google Scholar 

  181. Choudhry DK, Brenn BR. Bispectral index monitoring: a comparison between normal children and children with quadriplegic cerebral palsy. Anesth Analg. 2002;95(6):1582–5.

    Article  PubMed  Google Scholar 

  182. Saricaoglu F, Celebi N, Celik M, Aypar U. The evaluation of propofol dosage for anesthesia induction in children with cerebral palsy with bispectral index (BIS) monitoring. Pediatr Anesth. 2005;15(12):1048–52.

    CAS  Google Scholar 

  183. Bischoff P, Kochs E, Haferkorn D, Schulte am Esch J. Intraoperative EEG changes in relation to the surgical procedure during isoflurane-nitrous oxide anesthesia: hysterectomy versus mastectomy. J Clin Anesth. 1996;8(1):36–43.

    Google Scholar 

  184. Kochs E, Bischoff P, Pichlmeier U, Schulte am Esch J. Surgical stimulation induces changes in brain electrical activity during isoflurane/nitrous oxide anesthesia. A topographic electroencephalographic analysis. Anesthesiology. 1994;80(5):1026–34.

    Google Scholar 

  185. Morimoto Y, Matsumoto A, Koizumi Y, Gohara T, Sakabe T, Hagihira S. Changes in the bispectral index during intraabdominal irrigation in patients anesthetized with nitrous oxide and sevoflurane. Anesth Analg. 2005;100(5):1370–4 (table of contents).

    Google Scholar 

  186. Sleigh JW, Leslie K, Voss L. The effect of skin incision on the electroencephalogram during general anesthesia maintained with propofol or desflurane. J Clin Monit Comput. 2010;24(4):307–18.

    Article  PubMed  Google Scholar 

  187. Hartley C, Poorun R, Goksan S, Worley A, Boyd S, Rogers R, Ali T, Slater R. Noxious stimulation in children receiving general anaesthesia evokes an increase in delta frequency brain activity. Pain. 2014;155(11):2368–76.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebeccah Slater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hartley, C., Slater, R. (2017). Neuroimaging of Paediatric Pain. In: Saba, L. (eds) Neuroimaging of Pain. Springer, Cham. https://doi.org/10.1007/978-3-319-48046-6_18

Download citation

Publish with us

Policies and ethics