Skip to main content

Neuroimaging in Migraines

  • Chapter
  • First Online:
  • 1093 Accesses

Abstract

Neuroimaging techniques fall broadly into two great categories, examining either structure or function, but multiple methods can be employed in either approach. Structural imaging provides static anatomical information whereas functional imaging can be regarded as the method providing dynamic physiological information. However, the division between structural and functional imaging is difficult to make and arbitrary in some measure because structure and function can be often inextricably intertwined in the brain. Recent years have seen rapid growth of neuroimaging methodology which has provided new insights into functional brain organization of migraine patients. In particular, since migraine is regarded as a disorder of the brain, functional neuroimaging offers much in terms of understanding the physiological dysfunction that characterizes migraine. Furthermore, neuroimaging techniques are crucial for clinicians in order to further elucidate pathophysiological mechanisms underlying this complex and often disabling disease and to provide new therapeutical approaches for migraine patients. This chapter aim to focus on the results of structural and functional neuroimaging studies and attempts to synthesize the literature data to provide new pathophysiological concepts for understanding migraine mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

MRI:

Magnetic resonance imaging

NMR:

Nuclear magnetic resonance

GM:

Grey matter

WM:

White matter

VBM:

Voxel-based morphometry

CT:

Cortical thickness

SB:

Surface-based

DTI:

Diffusion tensor imaging

HC:

Healthy control

s-connectivity:

Structural connectivity

rCBF:

Regional cerebral blood flow

SPECT:

Single photon emission computed tomography

PET:

Positron emission tomography

fMRI:

Functional magnetic resonance imaging

18FDG:

2-deoxy-2-[18F] flour-d-glucose

BOLD:

Blood oxygen level dependent

MwoA:

Migraine without aura

MwA:

Migraine with aura

WMH:

White matter hyperintensities

PAG:

Periacqueductal grey matter

dLP:

Dorso lateral pons

IFG:

Inferior frontal gyrus

PCG:

Precentral gyrus

ACc:

Anterior cingulated cortex

MFG:

Middle frontal gyrus

PFc:

Prefrontal cortex

OFc:

Orbito frontal cortex

Vc:

Visual cortex

Fc:

Frontal cortex

SSc:

Somatosensory cortex

IPG:

Inferior parietal gyrus

PCc:

Posterior cingulate cortex

CSD:

Cortical spreading depression

CS:

Cortical surface

AD:

Axonal diffusivity

RD:

Radial diffusivity

MD:

Mean diffusivity

ROI:

Region of interest

CC:

Corpus callosum

TBSS:

Tract-based spatial statistics

RS:

Resting-state

f-connectivity:

Functional connectivity

ADC:

Apparent diffusion coefficient

dP:

Dorsal pons

5-HT:

5-hydroxytryptamine

µOR:

µ-opioid receptor

lOR:

l-opioid receptor

CA:

Cutaneous allodynia

3D-IIN:

3D immersive and interactive neuronavigation

NAcc:

Nucleus accumbens

NCF:

Nucleus cuneiformis

TP:

Temporal pole

EC:

Entorhinal cortex

MCc:

Middle cingulated cortex

NAA:

N–acetylaspartate

RP:

Rostral pons

VM:

Vestibular migraine

MRS:

31P-magnetic resonance spectroscopy

RSN:

Resting-state networks

DMN:

Default mode network

ReHo:

Regional homogeneity

SMA:

Supplementary motor area

FPN:

Fronto-parietal networks

EF:

Executive functions

References

  1. Bloch F. Nuclear induction. Phys Rev. 1946;70:460–74.

    Article  CAS  Google Scholar 

  2. Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev. 1946;69:37–8.

    Article  CAS  Google Scholar 

  3. Symms M, Jäger HR, Schmierer K, Yousry TA. A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiatry. 2004;75(9):1235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ellerbrock I, Engel AK, May A. Microstructural and network abnormalities in headache. Curr Opin Neurol. 2013;26(4):353–9.

    Article  PubMed  Google Scholar 

  5. Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol. 1981;9(4):344–52.

    Article  CAS  PubMed  Google Scholar 

  6. Tedeschi G, Russo A, Tessitore A. Functional neuroimaging in migraine: usefulness for the clinical neurologist. Neurol Sci. 2012;33(Suppl 1):S91–4.

    Article  PubMed  Google Scholar 

  7. May A. A review of diagnostic and functional imaging in headache. J Headache Pain. 2006;7(4):174–84.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sprenger T, Henriksen G, Valet M, et al. Positron emission tomography in pain research. From the structure to the activity of the opiate receptor system. Schmerz. 2007;21:503–13.

    Article  CAS  PubMed  Google Scholar 

  9. Sprenger T, Ruether KV, Boecker H, et al. Altered metabolism in frontal brain circuits in cluster headache. Cephalalgia. 2007;27:1033–42.

    Article  CAS  PubMed  Google Scholar 

  10. Sprenger T, Willoch F, Miederer M, et al. Opioidergic changes in the pineal gland and hypothalamus in cluster headache: a ligand PET study. Neurology. 2006;66:1108–10.

    Article  CAS  PubMed  Google Scholar 

  11. Grupen C, Buvat I. PET imaging: basics and new trends. Handbook of particle detection and imaging. Springer; 2012. p. 935–971.

    Google Scholar 

  12. Tedeschi G, Russo A, Tessitore A. Relevance of functional neuroimaging studies for understanding migraine mechanisms. Expert Rev Neurother. 2013;13(3):275–85.

    Article  CAS  PubMed  Google Scholar 

  13. Goadsby PJ, Lipton RB, Ferrari MD. Migraine–current understanding and treatment. N Engl J Med. 2002;346:257–70.

    Article  CAS  PubMed  Google Scholar 

  14. Matharu MS, Good CD, May A, et al. No change in the structure of the brain in migraine: a voxel-based morphometric study. Eur J Neurol. 2003;10(1):53–7.

    Article  CAS  PubMed  Google Scholar 

  15. Rocca MA, Ceccarelli A, Falini A, et al. Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke. 2006;37(7):1765–70.

    Article  PubMed  Google Scholar 

  16. Kruit MC, Van Buchem MA, Hofman PA, et al. Migraine as a risk factor for subclinical brain lesions. J Am Med Assoc. 2004;291:427–34.

    Article  CAS  Google Scholar 

  17. Valfrè W, Rainero I, Bergui M, et al. Voxel-based morphometry reveals gray matter abnormalities in migraine. Headache. 2008;48(1):109–17.

    Article  PubMed  Google Scholar 

  18. Kim JH, Suh SI, Seol HY, et al. Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia. 2008;28:598–604.

    Article  CAS  PubMed  Google Scholar 

  19. Jin C, Yuan K, Zhao L, et al. Structural and functional abnormalities in migraine patients without aura. NMR Biomed. 2013;26(1):58–64.

    Article  PubMed  Google Scholar 

  20. Stankewitz A, Valet M, Schulz E. Pain sensitizers exhibit grey matter changes after repetitive pain exposure: a longitudinal voxel-based morphometry study. Pain. 2013;154(9):1732–7.

    Article  PubMed  Google Scholar 

  21. Messina R, Rocca MA, Colombo B, et al. White matter microstructure abnormalities in pediatric migraine patients. Cephalalgia. 2015.

    Google Scholar 

  22. Tessitore A, Russo A, Giordano A, et al. Disrupted default mode network connectivity in migraine without aura. J Headache Pain. 2013;8(14):89.

    Article  Google Scholar 

  23. Tessitore A, Russo A, Conte F, et al. Abnormal connectivity within executive resting-state network in migraine with Aura. Headache. 2015;55(6):794–805.

    Article  PubMed  Google Scholar 

  24. Tedeschi G, Russo A, Conte F, et al. Increased interictal visual network connectivity in patients with migraine with aura. Cephalalgia. 2015.

    Google Scholar 

  25. Hu W, Guo J, Chen N, et al. A meta-analysis of voxel-based morphometric studies on migraine. Int J Clin Exp Med. 2015;8(3):4311–9.

    PubMed  PubMed Central  Google Scholar 

  26. Granziera C, DaSilva AF, Snyder J, et al. Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS Med. 2006;3(10):e402.

    Google Scholar 

  27. DaSilva AF, Granziera C, Snyder J, et al. Thickening in the somatosensory cortex of patients with migraine. Neurology. 2007;69(21):1990–5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hadjikhani N, Sanchez del Rio M, Wu O, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A. 2001;98(8):4687–92.

    Google Scholar 

  29. Kim JH, Kim JB, Suh SI, et al. Thickening of the somatosensory cortex in migraine without aura. Cephalalgia. 2014;34(14):1125–33.

    Article  PubMed  Google Scholar 

  30. Hougaard A, Amin FM, Hoffmann MB, et al. Structural gray matter abnormalities in migraine relate to headache lateralization, but not aura. Cephalalgia. 2015;35(1):3–9.

    Article  PubMed  Google Scholar 

  31. Maleki N, Barmettler G, Moulton EA, et al. Female migraineurs show lack of insular thinning with age. Pain. 2015;156(7):1232–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chong CD, Dodick DW, Schlaggar BL, et al. Atypical age-related cortical thinning in episodic migraine. Cephalalgia. 2014;34(14):1115–24.

    Article  PubMed  Google Scholar 

  33. Schwedt TJ, Chong CD. Correlations between brain cortical thickness and cutaneous pain thresholds are atypical in adults with migraine. PLoS One. 2014;9(6):e99791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Erpelding N, Moayedi M, Davis KD. Cortical thickness correlates of pain and temperature sensitivity. Pain. 2012;153:1602–9.

    Article  PubMed  Google Scholar 

  35. Schwedt TJ, Berisha V, Chong CD. Temporal lobe cortical thickness correlations differentiate the migraine brain from the healthy brain. PLoS One. 2015;10(2):e0116687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Rakic P. Specification of cerebral cortical areas. Science. 1988;241(4862):170–6.

    Article  CAS  PubMed  Google Scholar 

  37. Frye RE, Liederman J, Malmberg B, et al. Surface area accounts for the relation of gray matter volume to reading-related skills and history of dyslexia. Cereb Cortex. 2010;20(11):2625–35.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kapellou O, Counsell SJ, Kennea N, et al. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med. 2006;3(8):e265.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Datta R, Detre JA, Aguirre GK, et al. Absence of changes in cortical thickness in patients with migraine. Cephalalgia. 2011;31(14):1452–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Messina R, Rocca MA, Colombo B, et al. Cortical abnormalities in patients with migraine: a surface-based analysis. Radiology. 2013;268(1):170–80.

    Article  PubMed  Google Scholar 

  41. Granziera C, Daducci A, Romascano D, et al. Structural abnormalities in the thalamus of migraineurs with aura: a multiparametric study at 3 T. Hum Brain Mapp. 2014;35(4):1461–8.

    Article  PubMed  Google Scholar 

  42. Maleki N, Becerra L, Brawn J, et al. Common hippocampal structural and functional changes in migraine. Brain Struct Funct. 2013;218(4):903–12.

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt-Wilcke T, Hierlmeier S, Leinisch E. Altered regional brain morphology in patients with chronic facial pain. Headache. 2010;50(8):1278–85.

    Article  PubMed  Google Scholar 

  44. Obermann M, Nebel K, Schumann C, et al. Gray matter changes related to chronic posttraumatic headache. Neurology. 2009;73(12):978–83.

    Article  PubMed  Google Scholar 

  45. Burgmer M, Gaubitz M, Konrad C, et al. Decreased gray matter volumes in the cingulo-frontal cortex and the amygdala in patients with fibromyalgia. Psychosom Med. 2009;71(5):566–73.

    Article  PubMed  Google Scholar 

  46. Headache Classification Committee of the International Headache Society (IHS). The international classification of headache disorders. 3rd edn (beta version). Cephalalgia. 2013;33(9):629–808.

    Google Scholar 

  47. Swartz RH, Kern RZ. Migraine is associated with magnetic resonance imaging white matter abnormalities: a meta-analysis. Arch Neurol. 2004;61:1366–8.

    Article  PubMed  Google Scholar 

  48. Honningsvåg LM, Hagen K, Håberg A, et al. Intracranial abnormalities and headache: a population-based imaging study (HUNT MRI). Cephalalgia. 2015.

    Google Scholar 

  49. Seneviratne U, Chong W, Billimoria PH. Brain white matter hyperintensities in migraine: clinical and radiological correlates. Clin Neurol Neurosurg. 2013;115(7):1040–3.

    Article  PubMed  Google Scholar 

  50. Dinia L, Bonzano L, Albano B, et al. White matter lesions progression in migraine with aura: a clinical and MRI longitudinal study. J Neuroimag. 2013;23:47–52.

    Article  Google Scholar 

  51. Trauninger A, Leé l-Ossy E, Kamson DO, et al. Risk factors of migraine-related brain white matter hyperintensities: an investigation of 186 patients. J Headache Pain. 2011;12:97–103.

    Google Scholar 

  52. Kruit MC, Van Buchem MA, Launer LJ, et al. Migraine is associated with an increased risk of deep white matter lesions, subclinical posterior circulation infarcts and brain iron accumulation: the population-based MRI CAMERA study. Cephalalgia. 2010;30:129–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Evans RW. Clinical neuroimaging of migraine. In: Borsook D, May A, Goadsby P, Hargreaves R, editors. The migraine brain. New York: Oxford University Press; 2012. p. 85–95.

    Google Scholar 

  54. Erdélyi-Bótor S, Aradi M, Kamson DO, et al. Changes of migraine-related white matter hyperintensities after 3 years: a longitudinal MRI study. Headache. 2015;55(1):55–70.

    Google Scholar 

  55. Palm-Meinders IH, Koppen H, Terwindt GM, et al. Structural brain changes in migraine. JAMA. 2012;308:1889–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hamedani AG, Rose KM, Peterlin BL, et al. Migraine and white matter hyperintensities: the ARIC MRI study. Neurology. 2013;81(15):1308–13.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Aradi M, Schwarcz A, Perlaki G, et al. Quantitative MRI studies of chronic brain white matter hyperintensities in migraine patients. Headache. 2013;53(5):752–63.

    Article  PubMed  Google Scholar 

  58. Kurth T, Diener H-C. Migraine and stroke: perspectives for stroke physicians. Stroke. 2012;43:3421–6.

    Article  PubMed  Google Scholar 

  59. Bashir A, Lipton RB, Ashina S, et al. Migraine and structural changes in the brain: a systematic review and meta-analysis. Neurology. 2013;81(14):1260–8.

    Google Scholar 

  60. Friedman DI, Dodick DW. White matter hyperintensities in migraine: reason for optimism. JAMA. 2012;308:1920–1.

    Article  CAS  PubMed  Google Scholar 

  61. Gupta VK. White matter hyperintensities: pearls and pitfalls in interpretation of MRI abnormalities. Stroke. 2004;35(10):2239–41.

    Article  PubMed  Google Scholar 

  62. Aytaç B, Coşkun Ö, Alioğlu B, et al. Decreased antioxidant status in migraine patients with brain white matter hyperintensities. Neurol Sci. 2014;35(12):1925–9.

    Article  PubMed  Google Scholar 

  63. Pusic AD, Mitchell HM, Kunkler PE, et al. Spreading depression transiently disrupts myelin via interferon-gamma signaling. Exp Neurol. 2015;264:43–54.

    Article  CAS  PubMed  Google Scholar 

  64. Toghae M, Rahimian E, Abdollahi M, et al. The prevalence of magnetic resonance imaging hyperintensity in migraine patients and its association with migraine headache characteristics and cardiovascular risk factors. Oman Med J. 2015;30(3):203–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hougaard A, Amin FM, Ashina M. Migraine and structural abnormalities in the brain. Curr Opin Neurol. 2014;27(3):309–14.

    Article  PubMed  Google Scholar 

  66. Sacco S, Kurth T. Migraine and the risk for stroke and cardiovascular disease. Curr Cardiol Rep. 2014;16(9):524.

    Article  PubMed  Google Scholar 

  67. Husøy AK, Indergaard MK, Honningsvåg LM, et al. Perivascular spaces and headache: a population-based imaging study (HUNT-MRI). Cephalalgia. 2015.

    Google Scholar 

  68. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111:209–19.

    Article  CAS  PubMed  Google Scholar 

  69. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4:316–29.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rocca MA, Colombo B, Inglese M, et al. A diffusion tensor magnetic resonance imaging study of brain tissue from patients with migraine. J Neurol Neurosurg Psychiatry. 2003;74(4):501–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. DaSilva AF, Granziera C, Tuch DS, et al. Interictal alterations of the trigeminal somatosensory pathway and periaqueductal gray matter in migraine. NeuroReport. 2007;18(4):301–5.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li XL, Fang YN, Gao QC, et al. A diffusion tensor magnetic resonance imaging study of corpus callosum from adult patients with migraine complicated with depressive/anxious disorder. Headache. 2011;51(2):237–45.

    Article  PubMed  Google Scholar 

  73. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17:143–55.

    Article  PubMed  Google Scholar 

  74. Yuan K, Qin W, Liu P, et al. Reduced fractional anisotropy of corpus callosum modulates inter-hemispheric resting state functional connectivity in migraine patients without aura. PLoS One. 2012;7(9):e45476.

    Google Scholar 

  75. Yu D, Yuan K, Qin W, et al. Axonal loss of white matter in migraine without aura: a tract-based spatial statistics study. Cephalalgia. 2013;33(1):34–42.

    Article  PubMed  Google Scholar 

  76. Kara B, Kiyat Atamer A, Onat L, et al. DTI findings during spontaneous migraine attacks. Clin Neuroradiol. 2013;23(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  77. Coppola G, Tinelli E, Lepre C, et al. Dynamic changes in thalamic microstructure of migraine without aura patients: a diffusion tensor magnetic resonance imaging study. Eur J Neurol. 2014;21(2):287-e13.

    Article  PubMed  Google Scholar 

  78. Chong CD, Schwedt TJ. Migraine affects white-matter tract integrity: a diffusion-tensor imaging study. Cephalalgia. 2015.

    Google Scholar 

  79. Rocca MA, Pagani E, Colombo B, et al. Selective diffusion changes of the visual pathways in patients with migraine: a 3-T tractography study. Cephalalgia. 2008;28(10):1061–8.

    Article  CAS  PubMed  Google Scholar 

  80. Neeb L, Bastian K, Villringer K, et al. No microstructural white matter alterations in chronic and episodic migraineurs: a case-control diffusion tensor magnetic resonance imaging study. Headache. 2015;55(2):241–51.

    Article  PubMed  Google Scholar 

  81. Weiller C, May A, Limmroth V, et al. Brainstem activation in spontaneous human migraine attacks. Nat Med. 1995;1(7):658–60.

    Article  CAS  PubMed  Google Scholar 

  82. Afridi SK, Giffin NJ, Kaube H, et al. A positron emission tomographic study in spontaneous migraine. Arch Neurol. 2005;62(8):1270–5.

    Article  PubMed  Google Scholar 

  83. Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Hypothalamic activation in spontaneous migraine attacks. Headache. 2007;47(10):1418–26.

    Google Scholar 

  84. Russo A, Tessitore A, Giordano A, et al. The pain in migraine beyond the pain of migraine. Neurol. Sci. 2012;33(Suppl 1):S103–6.

    Article  PubMed  Google Scholar 

  85. Aurora SK, Barrodale PM, Tipton RL, et al. Brainstem dysfunction in chronic migraine as evidenced by neurophysiological and positron emission tomography studies. Headache. 2007;47(7):996–1003; discussion 1004.

    Google Scholar 

  86. Pavlovic JM, Buse DC, Sollars CM, et al. Trigger factors and premonitory features of migraine attacks: summary of studies. Headache. 2014;54(10):1670–9.

    Article  PubMed  Google Scholar 

  87. Maniyar FH, Sprenger T, Monteith T, et al. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain. 2014;137(Pt 1):232–41.

    Article  PubMed  Google Scholar 

  88. Maniyar FH, Sprenger T, Schankin C, et al. The origin of nausea in migraine-a PET study. J Headache Pain. 2014;3(15):84.

    Article  CAS  Google Scholar 

  89. Shin JH, Kim YK, Kim HJ, Kim JS. Altered brain metabolism in vestibular migraine: comparison of interictal and ictal findings. Cephalalgia. 2014;34(1):58–67.

    Article  PubMed  Google Scholar 

  90. Aurora SK, Barrodale PM, Tipton RL, et al. Brainstem dysfunction in chronic migraine as evidenced by neurophysiological and positron emission tomography studies. Headache. 2007;47(7):996–1003.

    Article  PubMed  Google Scholar 

  91. Chabriat H, Tehindrazanarivelo A, Vera P, et al. 5HT2 receptors in cerebral cortex of migraineurs studied using PET and 18F-fluorosetoperone. Cephalalgia. 1995;15(2):104–8.

    Article  CAS  PubMed  Google Scholar 

  92. Chugani DC, Niimura K, Chaturvedi S, et al. Increased brain serotonin synthesis in migraine. Neurology. 1999;53(7):1473–9.

    Article  CAS  PubMed  Google Scholar 

  93. Demarquay G, Lothe A, Royet JP, et al. Brainstem changes in 5-HT1A receptor availability during migraine attack. Cephalalgia. 2011;31(1):84–94.

    Article  CAS  PubMed  Google Scholar 

  94. Okazawa H, Tsuchida T, Pagani M, et al. Effects of 5-HT1B/1D receptor agonist rizatriptan on cerebral blood low and blood volume in normal circulation. J Cereb Blood Flow Metab. 2006;26(1):92–8.

    Article  CAS  PubMed  Google Scholar 

  95. Wall A, Kågedal M, Bergström M, et al. Distribution of zolmitriptan into the CNS in healthy volunteers: a positron emission tomography study. Drugs R&D. 2005;6(3):139–47.

    Article  CAS  Google Scholar 

  96. Nascimento TD, DosSantos MF, Lucas S, et al. μ-Opioid activation in the midbrain during migraine allodynia—brief report II. Ann Clin Transl Neurol. 2014; 1(6):445–50.

    Google Scholar 

  97. DaSilva AF, Nascimento TD, DosSantos MF, et al. Association of μ-opioid activation in the prefrontal cortex with spontaneous migraine attacks—brief report I. Ann Clin Transl Neurol. 2014;1(6):439–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. DaSilva AF, Nascimento TD, Love T, et al. 3D-neuronavigation in vivo through a patient’s brain during a spontaneous migraine headache. J Vis Exp. 2014;(88).

    Google Scholar 

  99. Leao AAP. Spreading depression of activity in cerebral cortex. J Neurophysiol. 1944;7:359–90.

    Google Scholar 

  100. Smith JM, Bradley DP, James MF, Huang CL. Physiological studies of cortical spreading depression. Biol Rev Camb Philos Soc. 2006;81(4):457–81.

    Article  PubMed  Google Scholar 

  101. Olesen J, Friberg L, Olsen TS, et al. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. Ann Neurol. 1990;28(6):791–8.

    Article  CAS  PubMed  Google Scholar 

  102. Ayata C. Cortical spreading depression triggers migraine attack: pro. Headache. 2010;50(4):725–30.

    Article  PubMed  Google Scholar 

  103. Sprenger T, Goadsby PJ. What has functional neuroimaging done for primary headache and for the clinical neurologist? J Clin Neurosci. 2010;17(5):547–53.

    Article  PubMed  Google Scholar 

  104. Russo A, Tessitore A, Tedeschi G. Migraine and trigeminal system-I can feel it coming…. Curr Pain Headache Rep. 2013;17(10):367.

    Article  PubMed  Google Scholar 

  105. May A, Kaube H, Büchel C, et al. Experimental cranial pain elicited by capsaicin: a PET study. Pain. 1998;74(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  106. Moulton EA, Burstein R, Tully S, et al. Interictal dysfunction of a brainstem descending modulatory center in migraine patients. PLoS One. 2008;3:e3799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Moulton EA, Becerra L, Maleki N, et al. Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine states. Cereb Cortex. 2011;21:435–48.

    Article  CAS  PubMed  Google Scholar 

  108. Russo A, Tessitore A, Esposito F, et al. Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation. J Neurol. 2012;259:1903–12.

    Article  PubMed  Google Scholar 

  109. Stankewitz A, Voit HL, Bingel U, Peschke C, May A. A new trigemino-nociceptive stimulation model for event-related fMRI. Cephalalgia. 2010;30:475–85.

    CAS  PubMed  Google Scholar 

  110. Aderjan D, Stankewitz A, May A. Neuronal mechanisms during repetitive trigemino-nociceptive stimulation in migraine patients. Pain. 2010;151:97–103.

    Article  PubMed  Google Scholar 

  111. Stankewitz A, Aderjan D, Eippert F, May A. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci. 2011;31:1937–43.

    Article  CAS  PubMed  Google Scholar 

  112. Schwedt TJ, Chong CD, Chiang CC, et al. Enhanced pain-induced activity of pain-processing regions in a case-control study of episodic migraine. Cephalalgia. 2014;34(12):947–58.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Maizels M, Aurora S, Heinricher M. Beyond neurovascular: migraine as a dysfunctional neurolimbic pain network. Headache. 2012;52(10):1553–65.

    Article  PubMed  Google Scholar 

  114. Main A, Dowson A, Gross M. Photophobia and phonophobia in migraineurs between attacks. Headache. 1997;37:492–5.

    Article  CAS  PubMed  Google Scholar 

  115. Vanagaite J, Pareja JA, Storen O, et al. Light-induced discomfort and pain in migraine. Cephalalgia. 1997;17:733–41.

    Article  CAS  PubMed  Google Scholar 

  116. Wober-Bingol C, Wober C, Karwautz A, et al. Clinical features of migraine: a cross-sectional study in patients aged three to sixty-nine. Cephalalgia. 2004;24:12–7.

    Article  CAS  PubMed  Google Scholar 

  117. Cao Y, Welch KM, Aurora S, et al. Functional MRI-BOLD of visually triggered headache in patients with migraine. Arch Neurol. 1999;56(5):548–54.

    Article  CAS  PubMed  Google Scholar 

  118. Boulloche N, Denuelle M, Payoux P, Fabre N, Trotter Y, Géraud G. Photophobia in migraine: an interictal PET study of cortical hyperexcitability and its modulation by pain. J Neurol Neurosurg Psychiatry. 2010;81(9):978–84.

    Article  PubMed  Google Scholar 

  119. Cao Y, Aurora SK, Nagesh V, et al. Functional MRI-BOLD of brainstem structures during visually triggered migraine. Neurology. 2002;59(1):72–8.

    Google Scholar 

  120. Denuelle M, Boulloche N, Payoux P, et al. A PET study of photophobia during spontaneous migraine attacks. Neurology. 2011;76(3):213–8.

    Article  CAS  PubMed  Google Scholar 

  121. Sarchielli P, Tarducci R, Presciutti O, et al. Functional 1H-MRS findings in migraine patients with and without aura assessed interictally. Neuroimage. 2005;24(4):1025–31.

    Google Scholar 

  122. Martín H, Sánchez del Río M, de Silanes CL, et al. Photoreactivity of the occipital cortex measured by functional magnetic resonance imaging-blood oxygenation level dependent in migraine patients and healthy volunteers: pathophysiological implications. Headache. 2011;51(10):1520–8.

    Article  PubMed  Google Scholar 

  123. Antal A, Polania R, Saller K, et al. Differential activation of the middle-temporal complex to visual stimulation in migraineurs. Cephalalgia. 2011;31(3):338–45.

    Article  PubMed  Google Scholar 

  124. Datta R, Aguirre GK, Hu S, et al. Interictal cortical hyperresponsiveness in migraine is directly related to the presence of aura. Cephalalgia. 2013;33:365–74.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Griebe M, Flux F, Wolf ME, et al. Multimodal assessment of optokinetic visual stimulation response in migraine with aura. Headache. 2014;54(1):131–41.

    Article  PubMed  Google Scholar 

  126. Hougaard A, Amin FM, Hoffmann MB, et al. Interhemispheric differences of fMRI responses to visual stimuli in patients with side-fixed migraine aura. Hum Brain Mapp. 2014;35(6):2714–23.

    Article  PubMed  Google Scholar 

  127. Zanchin G, Dainese F, Trucco M, et al. Osmophobia in migraine and tension-type headache and its clinical features in patients with migraine. Cephalalgia. 2007;27(9):1061–8.

    Article  CAS  PubMed  Google Scholar 

  128. De Carlo D, Toldo I, Dal Zotto L, et al. Osmophobia as an early marker of migraine: a follow-up study in juvenile patients. Cephalalgia. 2012;32(5):401–6.

    Article  PubMed  Google Scholar 

  129. Demarquay G, Royet JP, Mick G, et al. Olfactory hypersensitivity in migraineurs: a H(2)(15)O-PET study. Cephalalgia. 2008;28(10):1069–80.

    Article  CAS  PubMed  Google Scholar 

  130. Stankewitz A, May A. Increased limbic and brainstem activity during migraine attacks following olfactory stimulation. Neurology. 2011;77(5):476–82.

    Article  PubMed  Google Scholar 

  131. Russo A, Marcelli V, Esposito F, et al. Abnormal thalamic function in patients with vestibular migraine. Neurology. 2014;82(23):2120–6.

    Article  PubMed  Google Scholar 

  132. Borsook D, Burstein R. The enigma of the dorsolateral pons as a migraine generator. Cephalalgia. 2012;32(11):803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Espinosa-Sanchez JM, Lopez-Escamez JA. New insights into pathophysiology of vestibular migraine. Front Neurol. 2015;6(6):12.

    PubMed  PubMed Central  Google Scholar 

  134. Montagna P, Cortelli P, Monari L, et al. 31P-magnetic resonance spectroscopy in migraine without aura. Neurology. 1994;44(4):666–9.

    Article  CAS  PubMed  Google Scholar 

  135. Barbiroli B, Montagna P, Cortelli P, et al. Abnormal brain and muscle energy metabolism shown by 31P magnetic resonance spectroscopy in patients affected by migraine with aura. Neurology. 1992;42(6):1209–14.

    Article  CAS  PubMed  Google Scholar 

  136. Kim JH, Kim S, Suh SI, et al. Interictal metabolic changes in episodic migraine: a voxel-based FDG-PET study. Cephalalgia. 2010;30(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  137. Colombo B, Rocca MA, Messina R, et al. Resting-state fMRI functional connectivity: a new perspective to evaluate pain modulation in migraine? Neurol Sci. 2015;36(Suppl 1):41–5.

    Article  PubMed  Google Scholar 

  138. Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol. 2011;70(5):838–45.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Yu DH, Yuan K, Zhao L, et al. Regional homogeneity abnormalities in patients with interictal migraine without aura: a resting-state study. NMR Biomed. 2012;25(5):806–12.

    Article  PubMed  Google Scholar 

  140. Russo A, Tessitore A, Giordano A, et al. Executive resting-state network connectivity in migraine without aura. Cephalalgia. 2012;32(14):1041–8.

    Article  PubMed  Google Scholar 

  141. Maleki N, Becerra L, Borsook D. Migraine: maladaptive brain responses to stress. Headache. 2012;52(Suppl 2):102–6.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Borsook D, Maleki N, Becerra L, et al. Understanding migraine through the lens of maladaptive stress responses: a model disease of allostatic load. Neuron. 2012;73(2):219–34.

    Article  CAS  PubMed  Google Scholar 

  143. Aurora SK, Wilkinson F. The brain is hyperexcitable in migraine. Cephalalgia. 2007;27:1442–53.

    Article  CAS  PubMed  Google Scholar 

  144. Niddam DM, Lai KL, Fuh JL, et al. Reduced functional connectivity between salience and visual networks in migraine with aura. Cephalalgia. 2015.

    Google Scholar 

  145. Hougaard A, Amin FM, Magon S, et al. No abnormalities of intrinsic brain connectivity in the interictal phase of migraine with aura. Eur J Neurol. 2015;22(4):702-e46.

    Article  PubMed  Google Scholar 

  146. Zhao L, Liu J, Yan X, et al. Abnormal brain activity changes in patients with migraine: a short-term longitudinal study. J Clin Neurol. 2014;10(3):229–35.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zhao L, Liu J, Dong X, et al. Alterations in regional homogeneity assessed by fMRI in patients with migraine without aura stratified by disease duration. J Headache Pain. 2013;17(14):85.

    Article  Google Scholar 

  148. Moulton EA, Becerra L, Johnson A, et al. Altered hypothalamic functional connectivity with autonomic circuits and the locus coeruleus in migraine. PLoS One. 2014;9(4):e95508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Hadjikhani N, Ward N, Boshyan J, et al. The missing link: enhanced functional connectivity between amygdala and visceroceptive cortex in migraine. Cephalalgia. 2013;33(15):1264–8.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Yuan K, Zhao L, Cheng P, et al. Altered structure and resting-state functional connectivity of the basal ganglia in migraine patients without aura. J Pain. 2013;14(8):836–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gioacchino Tedeschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Russo, A., Tessitore, A., Tedeschi, G. (2017). Neuroimaging in Migraines. In: Saba, L. (eds) Neuroimaging of Pain. Springer, Cham. https://doi.org/10.1007/978-3-319-48046-6_10

Download citation

Publish with us

Policies and ethics