Skip to main content

An Integrated Robotic System for Autonomous Brake Bleeding in Rail Yards

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 14 (IAS 2016)

Abstract

Current operations in rail yards are dangerous and limited by the operational capabilities of humans being able to perform safely in harsh conditions while maintain high productivity. Such issues call out the need for robust and capable autonomous systems. In this paper, we outline one such autonomous solution for the railroad domain, capable of performing the brake bleeding inspection task in a hump yard. Towards that, we integrated a large form factor mobile robot (the Clearpath Grizzly) with an industrial manipulator arm (Yasakawa Motoman SIA20F) to effectively detect, identify and subsequently manipulate the brake lever under harsh outdoor environments. In this paper, we focus on the system design and the core algorithms necessary for reliable and repeatable system execution. To test our developed solution, we performed extensive field tests in a fully operational rail yard with randomly picked rail cars under day and night-time conditions. The results from the testing are promising and validate the feasibility of deploying an autonomous brake bleeding solution for railyards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://en.wikipedia.org/wiki/Rail_yard

  2. Oum, T.H., Waters, W.G., Yum, C.: A survey of productivity and efficiency measurement in rail transport. J. Transp. Econ. Policy 9–42 (1999)

    Google Scholar 

  3. Drudi, D.: Railroad-related work injury fatalities. Monthly Lab. Rev. 130, 17 (2007)

    Google Scholar 

  4. Thorpe, C., Durrant-Whyte, H.: Field robots. In: Proceedings of the 10th International Symposium of Robotics Research (ISRR’01) (2001)

    Google Scholar 

  5. Meeussen, W., Wise, M., Glaser, S., Chitta, S., McGann, C., Mihelich, P., Marder-Eppstein, E.: Autonomous door opening and plugging in with a personal robot. In: Proceedings of 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 729–736 (2010)

    Google Scholar 

  6. Srinivasa, S.S., Ferguson, D., Helfrich, C.J., Berenson, D., Collet, A., Diankov, R., Gallagher, G., Hollinger, G., Kuffner, J., Weghe, M.V.: HERB: a home exploring robotic butler. Auton Robots 28(1), 5–20 (2010)

    Article  Google Scholar 

  7. Nguyen, H., Anderson, C., Trevor, A., Jain, A., Xu, Z., Kemp, C.C.: El-E: an assistive robot that fetches objects from flat surfaces. In: Proceedings of the 2008 International Conference on Human-Robot Interaction (2008)

    Google Scholar 

  8. Pedersen, S.M., Fountas, S., Have, H., Blackmore, B.S.: Agricultural robots: an economic feasibility study. Precis. Agric. 5, 589–595 (2002)

    Google Scholar 

  9. Blackmore, B.S.: A systems view of agricultural robots. In: Proceedings 6th European Conference on Precision Agriculture (ECPA), pp. 23–31 (2007)

    Google Scholar 

  10. Redhead, F., Snow, S., Vyas, D., Bawden, O., Russell, R., Perez, T., Brereton, M.: Bringing the farmer perspective to agricultural robots. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1067–1072 (2015)

    Google Scholar 

  11. Green, J.: Underground mining robot: a CSIR project. In; Proceedings of 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 1–6 (2012)

    Google Scholar 

  12. Skonieczny, K., Delaney, M., Wettergreen, D.S., “Red” Whittaker, W.L.: Productive lightweight robotic excavation for the moon and mars. J. Aerosp. Eng. 27(4) (2013)

    Google Scholar 

  13. Jensen, M.A., Falk, D.B., Sørensen, C.G., Blas, M.R., Lykkegaard, K.L.: In-field and inter-field path planning for agricultural transport units. Comput. Ind. Eng. 63(4), 1054–1061 (2012)

    Article  Google Scholar 

  14. Suessemilch, I., Rohrer, C., Roesch, R., Guenther, C., Von Collani, Y., Linder, S., Fischer, V.: Projection unit for a self-directing mobile platform, transport robot and method for operating a self-directing mobile platform. U.S. Patent Application 14/447,501, filed 30 July 2014 (2014)

    Google Scholar 

  15. Pratt, G., Manzo, J.: The DARPA robotics challenge [competitions]. IEEE Robot. Autom. Mag. 20(2), 10–12 (2013)

    Article  Google Scholar 

  16. Johnson, M., Shrewsbury, B., Bertrand, S., Tingfan, W., Duran, D., Floyd, M., Abeles, P.: Team IHMC’s lessons learned from the DARPA robotics challenge trials. J. Field Robot. 32(2), 192–208 (2015)

    Article  Google Scholar 

  17. Labbe, M., Michaud, F.: Online global loop closure detection for large-scale multi-session graph-based slam. In: Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2661–2666 (2014)

    Google Scholar 

  18. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  Google Scholar 

  19. Li, S., Jain, A., Sharma, P., Sen, S.: Robust Object Detection in Industrial Environments by Using a Mobile Robot (2016)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1097–1105 (2012)

    Google Scholar 

  21. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks 10 (1995)

    Google Scholar 

  22. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  23. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  24. Wohlkinger, W., Vincze, M.: Ensemble of shape functions for 3D object classification. In: Proceedings of 2011 IEEE International Conference on Robotics and Biomimetics, pp. 2987–2992 (2011)

    Google Scholar 

  25. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  MATH  Google Scholar 

  26. Stein, S., Worgotter, F., Schoeler, M., Papon, J., Kulvicius, T.: Convexity based object partitioning for robot applications. In: Proceedings of 2014 IEEE International Conference on Robotics and Automation, pp. 3213–3220 (2014)

    Google Scholar 

  27. Rusu, R.B., Cousins, S.: 3D is here: Point cloud library (PCL). In: Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4 (2011)

    Google Scholar 

  28. Wurm, K.M., Hornung, A., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: a probabilistic, flexible, and compact 3D map representation for robotic systems. In: Proceedings of the 2010 ICRA Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation, vol. 2 (2010)

    Google Scholar 

  29. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source Robot Operating System. In: Proceedings of 2009 ICRA Workshop on Open Source Software, vol. 3, no. 2, p. 5 (2009)

    Google Scholar 

  30. http://wiki.ros.org/motoman_driver

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balajee Kannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tan, H. et al. (2017). An Integrated Robotic System for Autonomous Brake Bleeding in Rail Yards. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds) Intelligent Autonomous Systems 14. IAS 2016. Advances in Intelligent Systems and Computing, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-48036-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48036-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48035-0

  • Online ISBN: 978-3-319-48036-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics