Advertisement

Privacy Preserving Consensus-Based Economic Dispatch in Smart Grid Systems

  • Avikarsha MandalEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 670)

Abstract

Economic dispatch is a well-known optimization problem in smart grid systems which aims at minimizing the total cost of power generation among generation units while maintaining some system constraints. Recently, some distributed consensus-based approaches have been proposed to replace traditional centralized calculation. However, existing approaches fail to protect privacy of individual units like cost function parameters, generator constraints, output power levels, etc. In this paper, we show an attack against an existing consensus-based economic dispatch algorithm from [16] assuming semi-honest non-colluding adversaries. Then we propose a simple solution by combining a secure sum protocol and the consensus-based economic dispatch algorithm that guarantees data privacy under the same attacker model. Our Privacy Preserving Economic Dispatch (PPED) protocol is information-theoretically secure.

Keywords

Privacy Economic load dispatch Critical infrastructure protection Consensus algorithm Smart grid Secure multi-party computation 

Notes

Acknowledgments

The author would like to thank Erik Zenner and Frederik Armknecht for the helpful discussions on security analysis.

References

  1. 1.
    Bakirtzis, A., Petridis, V., Kazarlis, S.: Genetic algorithm solution to the economic dispatch problem. IEE Proc.-Gener. Transm. Distrib. 141(4), 377–382 (1994)CrossRefGoogle Scholar
  2. 2.
    Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret. In: Odlyzko, A.M. (ed.) Advances in Cryptology, Crypto 86. LNCS, vol. 263, pp. 251–260. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  3. 3.
    Bickson, D., Dolev, D., Bezman, G., Pinkas, B.: Peer-to-peer secure multi-party numerical computation. In: 2008 Eighth International Conference on Peer-to-Peer Computing, pp. 257–266. IEEE (2008)Google Scholar
  4. 4.
    Chor, B., Kushilevitz, E.: A communication-privacy tradeoff for modular addition. Inf. Proces. Lett. 45(4), 205–210 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chowdhury, B.H., Rahman, S.: A review of recent advances in economic dispatch. IEEE Trans. Power Syst. 5(4), 1248–1259 (1990)CrossRefGoogle Scholar
  6. 6.
    Dominguez-Garcia, A.D., Cady, S.T., Hadjicostis, C.N.: Decentralized optimal dispatch of distributed energy resources. In: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), pp. 3688–3693. IEEE (2012)Google Scholar
  7. 7.
    Erkin, Z., Troncoso-Pastoriza, J.R., Lagendijk, R.L., Perez-Gonzalez, F.: Privacy-preserving data aggregation in smart metering systems: an overview. IEEE Signal Process. Mag. 30(2), 75–86 (2013)CrossRefGoogle Scholar
  8. 8.
    Gaing, Z.-L.: Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 18(3), 1187–1195 (2003)CrossRefGoogle Scholar
  9. 9.
    Huang, Z., Mitra, S., Vaidya, N.: Differentially private distributed optimization. In: Proceedings of the 2015 International Conference on Distributed Computing and Networking, p. 4. ACM (2015)Google Scholar
  10. 10.
    Kreitz, G., Dam, M., Wikström, D.: Practical private information aggregation in large networks. In: Aura, T., Järvinen, K., Nyberg, K. (eds.) NordSec 2010. LNCS, vol. 7127, pp. 89–103. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 175–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Li, F., Luo, B., Liu, P.: Secure information aggregation for smart grids using homomorphic encryption. In: 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 327–332. IEEE (2010)Google Scholar
  13. 13.
    Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confidentiality 1(1), 5 (2009)Google Scholar
  14. 14.
    Naranjo, J.A.M., Casado, L.G., Jelasity, M.: Asynchronous privacy-preserving iterative computation on peer-to-peer networks. Computing 94(8–10), 763–782 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wood, A.J., Wollenberg, B.F.: Power Generation Operation and Control. A Wiley-Interscience publication. Wiley, Hoboken (1996)Google Scholar
  16. 16.
    Yang, S., Tan, S., Jian-Xin, X.: Consensus based approach for economic dispatch problem in a smart grid. IEEE Trans. Power Syst. 28(4), 4416–4426 (2013)CrossRefGoogle Scholar
  17. 17.
    Zhang, Z., Chow, M.-Y.: Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid. IEEE Trans. Power Syst. 27(4), 1761–1768 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Offenburg University of Applied SciencesOffenburgGermany

Personalised recommendations