Skip to main content

Nanoparticles to Sense Food Quality

  • Chapter
  • First Online:
Nanoscience in Food and Agriculture 3

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 23))

Abstract

Food contains various nutritionally constituents for animal and human growth. Food material also supports the growth of microorganisms. Microorganisms can cause infection or produce toxins that adversely affect human health. Further, food adulteration and brand protection is also a serious problem. Therefore food processing, storage and transport can lead to risk of food contamination, adulteration and degradation of sensitive food ingredients.

We review here the application of nanomaterials for food quality sensing. Organic and inorganic nanoparticles have application in detection of disease causing microorganism, toxic chemicals, food freshness, product authenticity, brand protection, and artificial smell and taste sensing. Nanosensors can sense pathogenic bacteria in food items with single cell level sensitivity. Nanoparticles are also successfully used for the detection of food-contaminating toxins, namely aflatoxin, palytoxin, Botulinium neurotoxin, ochratoxin, zearalenone and HT-2. Nanoparticles are also used for the detection of toxic contaminants such as dyes, fertilizer and pesticides in food. These applications are further widened to vitamins, essential amino acid and hydrogen peroxide. Nanoparticles functionalized with biological receptors can also sense odorant and tastant with human-like efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Actis P, Jejelowo O, Pourmand N (2010) Ultrasensitive mycotoxin detection by STING sensors. Biosens Bioelectron 26:333–337. doi:10.1016/j.bios.2010.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afonso AS, Perez-Lopez B, Faria RC, Mattoso LHC, Hernandez-Herrero M, Roig-Sagues AX, Costa MM, Merkoci A (2013) Electrochemical detection of Salmonella using gold nanoparticles. Biosens Bioelectron 40:121–126. doi:10.1016/j.bios.2012.06.054

    Article  CAS  PubMed  Google Scholar 

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52. doi:10.1038/nbt927

    Article  CAS  PubMed  Google Scholar 

  • Amagliani G, Brandi G, Omiccioli E, Casiere A, Bruce I, Magnani M (2004) Direct detection of Listeria monocytogenes from milk by magnetic based DNA isolation and PCR. Food Microbiol 21:597–603. doi:10.1016/j.fm.2003.10.008

    Article  CAS  Google Scholar 

  • Ansari AA, Kaushik A, Solanki PR, Malhotra BD (2010) Nanostructured zinc oxide platform for mycotoxin detection. Bioelectrochemistry 77:75–81. doi:10.1016/j.bioelechem.2009.06.014

    Article  CAS  PubMed  Google Scholar 

  • Bagheri H, Afkhami A, Shirzadmehr A, Khoshsafar H, Khoshsafar H, Ghaedi H (2013) Novel potentiometric sensor for the determination of Cd2Y based on a new nano-composite. Intern J Environ Anal Chem 93:578–591. doi:10.1080/03067319.2011.649741

    Article  CAS  Google Scholar 

  • Baik JM, Zielke M, Kim MH, Turner KL, Wodtke AM, Moskovits M (2010) Tin-oxide-nanowire-based electronic nose using heterogeneous catalysis as a functionalization strategy. ACS Nano 4:3117–3122. doi:10.1021/nn100394a

    Article  CAS  PubMed  Google Scholar 

  • Baldwin EA, Bai J, Plotto A, Dea S (2011) Electronic noses and tongues: applications for the food and pharmaceutical industries. Sensors 11:4744–4766. doi:10.3390/s110504744

    Article  PubMed  PubMed Central  Google Scholar 

  • Banholzer MJ, Osberg KD, Li S, Mangelson BF, Schatz GC, Mirkin CA (2010) Silver-based nanodisk codes. ACS Nano 4:5446–5452. doi:10.1021/nn101231u

    Article  CAS  PubMed  Google Scholar 

  • Banu S, Birtwell S, Chen Y, Galitonov G, Morgan H, Zheludev N (2006) High capacity nano-optical diffraction barcode tagging for biological and chemical applications. Opt Express 14:1382–1387. doi:10.1364/OE.14.001382

    Article  Google Scholar 

  • Beitollahi H, Ardakania MM, Ganjipour B, Naeimi H (2008) Novel 2, 2’-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid. Biosens Bioelectron 24:362–368. doi:10.1016/j.bios.2008.04.009

    Google Scholar 

  • Birtwell SW, Galitonov GS, Morgan H, Zheludev NI (2008) Superimposed nanostructured diffraction gratings as high capacity barcodes for biological and chemical applications. Opt Commun 281:1789–1795. doi:10.1016/j.optcom.2007.04.066

    Article  CAS  Google Scholar 

  • Borisov SM, Klimant I (2009) Luminescent nanobeads for optical sensing and imaging of dissolved oxygen. Microchim Acta 164:7–15. doi:10.1007/s00604-008-0047-9

    Article  CAS  Google Scholar 

  • Call DR, Borucki MK, Loge FJ (2003) Detection of bacterial pathogens in environmental samples using DNA microarrays. J Microbiol Meth 53:235–243. doi:10.1016/S0167-7012(03)00027-7

    Article  CAS  Google Scholar 

  • Carlo MD, Fusella GC, Pepe A, Sergi M, Martino MD, Mascini M, Martino G, Cichelli A, Natale CD, Compagnone D (2014) Novel oligopeptides based e-nose for food quality control: application to extra-virgin olive samples. Qual Assur Saf Crop 6:307–317. doi:10.3920/QAS2013.0377

    Google Scholar 

  • Chae I, Lee D, Kim S, Thundat T (2015) Electronic nose for recognition of volatile vapor mixtures using a nanopore-enhanced opto-calorimetric spectroscopy. Anal Chem 87:7125–7132. doi:10.1021/acs.analchem.5b00915

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Ma L, Yuan R, Chai Y, Xiang Y, Wang C (2011) Electrochemical sensor based on Prussian blue nanorods and gold nanochains for the determination of H2O2. Eur Food Res Technol 232:87–95. doi:10.1007/s00217-010-1364-x

    Article  CAS  Google Scholar 

  • Cheng Y, Liua Y, Huanga J, Lia K, Zhang W, Xiana Y, Xin L (2009) Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli. Talanta 77:1332–1336. doi:10.1016/j.talanta.2008.09.014

    Article  CAS  PubMed  Google Scholar 

  • Chiao DJ, Shyu RH, Hu CS, Chiang HY, Tang SS (2004) Colloidal gold-based immunochromatographic assay for detection of botulinum neurotoxin type B. J Chromatogr B 809:37–41. doi:10.1016/j.jchromb.2004.05.033

    Article  CAS  Google Scholar 

  • Cho CE, Choi JW, Lee M, Koo K (2008) Fabrication of an electrochemical immunosensor with self-assembled peptide nanotubes. Colloid Surf A 313–314:95–99. doi:10.1016/j.colsurfa.2007.04.154

    Article  CAS  Google Scholar 

  • Constantine C, Gattas-Asfura K, Mello S, Crespo G, Rastogi V, Cheng T, DeFrank J, Leblanc R (2003) Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon. J Phys Chem B 107:13762–13764. doi:10.1021/jp036381v

    Article  CAS  Google Scholar 

  • Cubukcu M, Timur S, Anik U (2007) Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. Talanta 74:434–439. doi:10.1016/j.talanta.2007.07.039

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Internat 69:381–400. doi:10.1016/j.foodres.2015.01.005

    Article  Google Scholar 

  • Devaramani S, Malingappa P (2012) Synthesis and characterization of cobalt nitroprusside nano particles: application to sulfite sensing in food and water samples. Electrochim Acta 85:579–587. doi:10.1016/j.electacta.2012.08.105

    Article  CAS  Google Scholar 

  • Elyasi M, Khalilzadeh MA, Karimi-Maleh H (2013) High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem 141:4311–4317. doi:10.1016/j.foodchem.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  • Ensafi AA, Karimi-Maleh H (2010) Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. J Electroanal Chem 640:75–83. doi:10.1016/j.jelechem.2010.01.010

    Article  CAS  Google Scholar 

  • Ensafi A. A, Karimi-Maleh H, Mallakpour S (2012) Simultaneous determination of ascorbic acid, acetaminophen and tryptophan by square wave voltammetry using N-(3,4-dihydroxyphenethyl)-3,5- dinitrobenzamide-modified carbon nanotubes paste electrode. Electroanal 24:666–675. doi:10.1002/elan.201100465

    Article  CAS  Google Scholar 

  • Farahi RH, Passian A, Tetard L, Thundat T (2012) Critical issues in sensor science to aid food and water safety. ACS Nano 6:4548–4556. doi:10.1021/nn204999j

    Article  CAS  PubMed  Google Scholar 

  • Filippo E, Serra A, Manno D (2009) Poly(vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor. Sensor Actuat B-Chem 138:625–630. doi:10.1016/j.snb.2009.02.056

    Article  CAS  Google Scholar 

  • Franz DR, Jahrling PB, Friedlander AM, McClain DJ, Hoover DL, Bryne WR, Avlin JA, Christopher GW, Eitzen EM (1997) Clinical recognition and management of patients exposed to biological warfare agents. J Am Med Assoc 278:399–411. doi:10.1001/jama.1997.03550050061035

    Article  CAS  Google Scholar 

  • Gan T, Li K, Wu K (2008) Multi-wall carbon nanotube-based electrochemical sensor for sensitive determination of Sudan I. Sensor Actuat B-Chem 132:134–139. doi:10.1016/j.snb.2008.01.013

    Article  CAS  Google Scholar 

  • Garcia-Aljaro C, Bangar MA, Baldrich E, Munoz FJ, Mulchandani A (2010) Conducting polymer nanowire-based chemiresistive biosensor for the detection of bacterial spores. Biosens Bioelectron 25:2309–2312. doi:10.1016/j.bios.2010.03.021

    Article  CAS  PubMed  Google Scholar 

  • Gobi KV, Matsumoto K, Toko K, Miura N (2008) Highly regenerable and storageable all-chemical based PEG-immunosensor chip for SPR detection of ppt levels of fragrant compounds from beverage samples. Sens Instrum Food Qual 2:225–233. doi:10.1007/s11694-008-9033-5

    Article  Google Scholar 

  • Gutierrez-Tauste D, Domenech X, Casan N, Ayllon J (2007) Characterization of methylene blue/TiO2 hybrid thin films prepared by the liquid phase deposition (LPD) method: Application for fabrication of light-activated colorimetric oxygen indicators. J Photoch Photobio A 187:45–52. doi:10.1016/j.jphotochem.2006.09.011

    Article  CAS  Google Scholar 

  • Han C, Li H (2010) Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles. Analyst 135:583–588. doi:10.1039/b923424a

    Article  CAS  PubMed  Google Scholar 

  • Hossain MK, Ghosh SC, Boontongkong Y, Thanachayanont C, Dutta J (2005) Growth of zinc oxide nanowires and nanobelts for gas sensing applications. J Metast Nanocryst Mater 23:27–30. doi:10.4028/www.scientific.net/JMNM.23.27

    Article  CAS  Google Scholar 

  • Huang J, Wan Q (2009) Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9:9903–9924. doi:10.3390/s91209903

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Li L, Zhou G, Liu Z, Ma Q, Feng Y, Zeng G, Tinnefeld P, He Z (2011) Visual detection of melamine in milk samples based on label-free and labeled gold nanoparticles. Talanta 85:1013–1019. doi:10.1016/j.talanta.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  • Ivanov P, Llobet E, Vilanova X, Brezmes J, Hubalek J, Correig X (2004) Development of high sensitivity ethanol gas sensors based on Pt-doped SnO2 surfaces. Sensor Actuat B-Chem 99:201–206. doi:10.1016/j.snb.2003.11.012

    Article  CAS  Google Scholar 

  • Jamali T, Karimi-Maleh H, Khalilzadeh MA (2014) A novel nanosensor based on Pt: Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. LWT Food Sci Technol 57:679–685. doi:10.1016/j.lwt.2014.01.023

    Google Scholar 

  • Ji X, Zheng J, Xu J, Rastogi V, Cheng T, DeFrank J, Leblanc R (2005) (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J Phys Chem B 109:3793–3799. doi:10.1021/jp044928f

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Valdeperez D, Nazarenus M, Wang Z, Stellacci F, Parak WJ, Pino PD (2015) Future perspectives towards the use of nanomaterials for smart food packaging and quality control. Part Part Syst Charact 32:408–416. doi:10.1002/ppsc.201400192

    Article  Google Scholar 

  • Jin HJ, Lee SH, Kim TH, Park J, Song HS, Park TH, Hong S (2012) Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. Biosens Bioelectron 35:335–341. doi:10.1016/j.bios.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  • Joung HA, Lee NR, Lee SK, Ahn J, Shin YB, Choi HS, Lee CS, Kim S, Kim MG (2008) High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. Anal Chim Acta 630:168–173. doi:10.1016/j.aca.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  • Kara M, Uzun L, Kolayli S, Denizli A (2013) Combining molecular imprinted nanoparticles with surface plasmon resonance nanosensor for chloramphenicol detection in honey. J Appl Polym Sci 129:2273–2279. doi:10.1002/APP.38936

    Article  CAS  Google Scholar 

  • Karimi-Maleh H, Moazampour M, Yoosefian M, Sanati AL, Javazmi FT, Mahani M (2014) An electrochemical nanosensor for simultaneous voltammetric determination of ascorbic acid and Sudan I in food samples. Food Anal Methods 7:2169–2176. doi:10.1007/s12161-014-9867-x

    Article  Google Scholar 

  • Kaushik A, Solanki PR, Ansari AA, Ahmad S, Malhotra BD (2009) A nanostructured cerium oxide film-based immunosensor for mycotoxin detection. Nanotechnology 20:55105. doi:10.1088/0957-4484/20/5/055105

    Article  CAS  Google Scholar 

  • Kim TH, Lee SH, Lee J, Song HS, Oh EH, Park HT, Hong S (2009) Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv Mater 21:91–94. doi:10.1002/adma.200801435

    Article  CAS  Google Scholar 

  • Kim TH, Song HS, Jin HJ, Lee SH, Namgung S, Kim UK, Park TH, Hong S (2011) Bioelectronic super-taster device based on taste receptor-carbon nanotube hybrid structures. Lab Chip 11:2262–2267. doi:10.1039/c0lc00648c

    Article  CAS  PubMed  Google Scholar 

  • Ko W, Jung N, Lee M, Yun M, Jeon S (2013) Electronic nose based on multipatterns of ZnO nanorods on a quartz resonator with remote electrodes. ACS Nano 7:6685–6690. doi:10.1021/nn4027245

    Article  CAS  PubMed  Google Scholar 

  • Kuang H, Chen W, Yan W, Xu L, Zhu Y, Liu L, Chu H, Peng C, Wang L, Kotov NA, Xu C (2011) Crown ether assembly of gold nanoparticles: Melamine sensor. Biosens Bioelectron 26:2032–2037. doi:10.1016/j.bios.2010.08.081

    Article  CAS  PubMed  Google Scholar 

  • Kuhn T S (1996) The structure of scientific revolutions. University of Chicago press, Chicago, p. 212

    Book  Google Scholar 

  • Kwak CH, Woo HS, Hady FA, Wazzan AA, Lee J. H (2016) Vapor-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol. Sensor Actuat B-Chem 223:527–534. doi:10.1016/j.snb.2015.09.120

    Article  CAS  Google Scholar 

  • Lee SH, Jin HJ, Song HS, Hong S, Parka TH (2012a) Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. J Biotechnol 157:467–472. doi:10.1016/j.jbiotec.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH (2012b) Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 33:1722–1729. doi:10.1016/j.biomaterials.2011.11.044

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Jung JW, Kim D, Ahn YJ, Hong S, Kwon HW (2015) Discrimination of umami tastants using floating electrode-based bioelectronic tongue mimicking insect taste systems. ACS Nano 9:11728–11736. doi:10.1021/acsnano.5b03031

    Article  CAS  PubMed  Google Scholar 

  • Leggiadro RJ (2000) The threat of biological terrorism: a public health and infection control reality. Infect Control Hosp Epidemiol 21:53–56. doi:10.1086/501700

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cu HYT, Luo D (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol 23:885–889. doi:10.1038/nbt110

    Article  CAS  PubMed  Google Scholar 

  • Li JW, Yu JJ, Zhao FQ, Zeng BZ (2007) Direct electrochemistry of glucose oxidase entrapped in nanogold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing. Anal Chim Acta 587:33–40. doi:10.1016/j.aca.2007.01.014

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang T, Zhang J, Zhu D, Zhang X, Ning Y, Zhang H, Yang B (2010) Controlled fabrication of fluorescent barcode nanorods. ACS Nano 4:4350–4360. doi:10.1021/nn9017137

    Article  CAS  PubMed  Google Scholar 

  • Li L, Liu M, He S, Chen W (2014) Freestanding 3D mesoporous Co3O4@carbon foam nanostructures for ethanol gas sensing. Anal Chem 86:7996–8002. doi:10.1021/ac5021613

    Article  CAS  PubMed  Google Scholar 

  • Liang KZ, Mu WZ (2008) ZrO2/DNA-derivated polyion hybrid complex membrane for the determination of hydrogen peroxide in milk. Ionics 14:533–539. doi:10.1007/s11581-008-0213-4

    Article  CAS  Google Scholar 

  • Lim JH, Park J, Ahn JH, Jin HJ, Hong S, Park THA (2013) peptide receptor-based bioelectronic nose for the real-time determination of seafood quality. Biosens Bioelectron 39:244–249. doi:10.1016/j.bios.2012.07.054

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Jungmann R, Leifer AM, Li C, Levner D, Church GM, Shih WM, Yin P (2012) Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nat Chem 4:832–839. doi:10.1038/nchem.1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Yu J, Ju H (2003) Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. J Electroanal Chem 540:61–67. doi:10.1016/S0022-0728(02)01276-7

    Article  CAS  Google Scholar 

  • Liu Y, Yao D, Chang H, Liu C, Chen C (2008) Magnetic bead based DNA detection with multi-layers quantum dots labeling for rapid detection of Escherichia coli O157:H7. Biosens Bioelectron 24:558–565. doi:10.1016/j.bios.2008.06.019

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wen M, Zhang F, Liu D, Tian Y (2010) Electrochemical sensing platform for hydrogen peroxide using amorphous FeNiPt nanostructures. Anal Methods 2:143–148. doi:10.1039/b9ay00209j

    Article  CAS  Google Scholar 

  • Liu D, Chen W, Wei J, Li X, Wang Z, Jiang X (2012) A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal Chem 84:4185–4191. doi:10.1021/ac300545p

    Article  CAS  PubMed  Google Scholar 

  • Liusman C, Li H, Lu G, Wu J, Boey F, Li S, Zhang H (2012) Surface-enhanced Raman scattering of Ag-Au nanodisk heterodimers. J Phys Chem C 116:10390–10395. doi:10.1021/jp301739a

    Article  CAS  Google Scholar 

  • Lou Z, Li F, Deng J, Wang LL, Zhang T (2013) Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. ACS Appl Mater Interfaces 5:12310–12316. doi:10.1021/am402532v

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Yu S, Fan Y, Yang C, Xu D (2013) Nonenzymatic hydrogen peroxide electrochemical sensor based on carbon-coated SnO2 supported Pt nanoparticles. Colloid Surf B 101:106–110. doi:10.1166/sl.2015.3414

    Article  CAS  Google Scholar 

  • Ma X, Chao M, Wang Z (2013) Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulphonate. Food Chem 138:739–744

    Article  CAS  PubMed  Google Scholar 

  • Majidi MR, Baj RFB, Naseri A (2013) Carbon nanotube-ionic liquid (CNT-IL) nanocamposite modified sol-gel derived carbon-ceramic electrode for simultaneous determination of sunset yellow and tartrazine in food samples. Food Anal Methods 6:1388–1397. doi:10.1007/s12161-012-9556-6

    Article  Google Scholar 

  • Mak AC, Osterfeld SJ, Yu H, Wang SX, Davis RW, Jejelowo OA, Pourmand N (2010) Sensitive giant magnetoresistive-based immunoassay for multiplex mycotoxin detection. Biosens Bioelectron 25:1635–1639. doi:10.1016/j.bios.2009.11.028

    Article  CAS  PubMed  Google Scholar 

  • Mielle P (1996) Electronic noses: towards the objective instrumental characterization of food aroma. Trends Food Sci Tech 7:432–438. doi:10.1016/S0924-2244(96)10045-5

    Article  CAS  Google Scholar 

  • Ming L, Xi X, Chen T, Liu J (2008) Electrochemical determination of trace Sudan I contamination in chili powder at carbon nanotube modified electrodes. Sensors 8:1890–1900. doi:10.3390/s8031890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirabbaszadeh K, Mehrabian M (2012) Synthesis and properties of ZnO nanorods as ethanol gas sensors. Phys Scr 85:1–8. doi:10.1088/0031-8949/85/03/035701

    Article  CAS  Google Scholar 

  • Najafi M, Khalilzadeh MA, Karimi-Maleh H (2014) A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem 158:125–131. doi:10.1016/j.foodchem.2014.02.082

    Article  CAS  PubMed  Google Scholar 

  • Nopwinyuwong A, Kaisone T, Hanthanon P, Nandhivajrin C, Boonsupthip W, Pechyen C, Suppakul P (2014) Effects of nanoparticle concentration and plasticizer type on colorimetric behavior of polydiacetylene/silica nanocomposite as time-temperature indicator. Energy Procedia 56:423–430. doi:10.1016/j.egypro.2014.07.175

    Article  CAS  Google Scholar 

  • Norouzi P, Larijani B, Ganjali MR, Ochratoxin A (2012) sensor based on nanocomposite hybrid film of ionic liquid-graphene nano-sheets using coulometric FFT cyclic voltammetry. Int J Electrochem Sci 7:7313–7324

    CAS  Google Scholar 

  • Pan J, Ganesan R, Shen H, Mathur S (2010) Plasma-modified SnO2 nanowires for enhanced gas sensing. J Phys Chem C 114:8245–8250. doi:10.1021/jp101072f

    Article  CAS  Google Scholar 

  • Park J, Lim JH, Jin HJ, Namgung S, Lee SH, Park TH, Hong S (2012) A bioelectronic sensor based on canine olfactory nanovesicle-carbon nanotube hybrid structures for the fast assessment of food quality. Analyst 137:3249–3254. doi:10.1039/c2an16274a

    Article  CAS  PubMed  Google Scholar 

  • Pimtong-Ngam Y, Jiemsirilers S, Supothina S (2007) Preparation of tungsten oxide-tin oxide nanocomposites and their ethylene sensing characteristics. Sensor Actuat A-Phys 139:7–11. doi:10.1016/j.sna.2006.10.032

    Article  CAS  Google Scholar 

  • Ping H, Zhang M, Li H, Li S, Chen Q, Sun C, Zhang T (2012) Visual detection of melamine in raw milk by label-free silver nanoparticles. Food Control 23:191–197. doi:10.1016/j.foodcont.2011.07.009

    Article  CAS  Google Scholar 

  • Qin L, Zou S, Xue C, Atkinson A, Schatz GC, Mirkin CA (2006) Designing, fabricating and imaging Raman hot spots. Proc Nat Acad Sci USA 103:13300–13303. doi:10.1073/pnas.0605889103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin L, Banholzer MJ, Millstone JE, Mirkin CA (2007) Nanodisk codes. Nano Lett 7:3849–3853. doi:10.1021/nl072606s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radoi A, Targa M, Simon BP, Marty JL (2008) Enzyme-linked immunosorbent assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M1 detection. Talanta 77:138–143. doi:10.1016/j.talanta.2008.05.048

    Article  CAS  PubMed  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Samuel SM, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:2464. doi:10.1007/s11051-014-2464-5

    Article  Google Scholar 

  • Ravindranath SP, Mauer LJ, Roy CD, Irudayaraj J (2009) Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes. Anal Chem 81:2840–2846. doi:10.1021/ac802158y

    Article  CAS  PubMed  Google Scholar 

  • Realini CE, Marcos B (2014) Active and intelligent packaging systems for a modern society. Meat Sci 98:404–419. doi:10.1016/j.meatsci.2014.06.031

    Article  PubMed  Google Scholar 

  • Sanchez-Acevedo ZC, Riu J, Rius FX (2009) Fast picomolar selective detection of bisphenol A in water using a carbon nanotube field effect transistor functionalized with estrogen receptor-α. Biosens Bioelectron 24:2842–2846. doi:10.1016/j.bios.2009.02.019

    Article  CAS  PubMed  Google Scholar 

  • Sanz VC, Mena ML, Gonazalez AC, Sedeno PY, Pingarron JM (2005) Development of tyrosinase biosensor based on gold nanoparticles-modifed glassy carbon electrodes application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 528:1–8. doi:10.1016/j.aca.2004.10.007

    Article  CAS  Google Scholar 

  • Sberveglieri G, Concina I, Comini E, Falasconi M, Ferroni M, Sberveglieri V (2012) Synthesis and integration of tin oxide nanowires into an electronic nose. Vacuum 86:532–535. doi:10.1016/j.vacuum.2011.10.004

    Article  CAS  Google Scholar 

  • Scandurra G, Arena A, Ciofi C, Saitta G (2013) Electrical characterization and hydrogen peroxide sensing properties of gold/nafion: polypyrrole/MWCNTs electrochemical devices. Sensors 13:3878–3888. doi:10.3390/s130303878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Matharu Z, Sumana G, Solanki PR, Kim CG, Malhotra BD (2010) Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. Thin Solid Films 519:1213–1218. doi:10.1016/j.tsf.2010.08.071

    Article  CAS  Google Scholar 

  • Song HS, Kwon OS, Lee SH, Park SJ, Kim UK, Jang J, Park TH (2013) Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett 13:172–178. doi:10.1021/nl3038147

    Article  CAS  PubMed  Google Scholar 

  • Song HS, Jin HJ, Ahn SR, Kim D, Lee SH, Kim UK, Simons CT, Hong S, Park TH (2014) Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance. ACS Nano 8:9781–9789. doi:10.1021/nn502926x

    Article  CAS  PubMed  Google Scholar 

  • Stoycheva T, Vallejos S, Blackman C, Moniz SJA, Calderer J, Correig X (2012) Important considerations for effective gas sensors based on metal oxide nanoneedles films. Sensor Actuat B-Chem 161:406–413. doi:10.1016/j.snb.2011.10.052

    Article  CAS  Google Scholar 

  • Su X, Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157: H7. Anal Chem 76:4806–4810. doi:10.1021/ac049442

    Article  CAS  PubMed  Google Scholar 

  • Su H, Fan H, Ai S, Wu N, Fan H, Bian P, Liu J (2011) Selective determination of melamine in milk samples using 3-mercapto-1-propanesulfonate-modified gold nanoparticles as colorimetric probe. Talanta 85:1338–1343. doi:10.1016/j.talanta.2011.06.017

    Article  CAS  PubMed  Google Scholar 

  • Sysoev VV, Goschnick J, Schneider T, Strelcov E, Kolmakov AA (2007) gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett 7:3182–3188. doi:10.1021/nl071815+

    Article  CAS  PubMed  Google Scholar 

  • Sysoev VV, Strelcov E, Sommer M, Bruns M, Kiselev I, Habicht W, Kar S, Gregoratti L, Kiskinova M, Kolmakov A (2010) Single-nanobelt electronic nose: engineering and tests of the simplest analytical element. ACS Nano 4:4487–4494. doi:10.1021/nn100435h

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Yan M, Ma X, Zhang H, Wang M, Yang D (2006) Gas sensing behavior of polyvinylpyrrolidone-modified ZnO nanoparticles for trimethylamine. Sensor Actuat B-Chem 113:324–328. doi:10.1016/j.snb.2005.03.024

    Article  CAS  Google Scholar 

  • Terry LA, White SF, Tigwell LJ (2005) The application of biosensors to fresh produce and the wider food industry. J Agric Food Chem 53:1309–1316. doi:10.1021/jf040319t

    Article  CAS  PubMed  Google Scholar 

  • Vamvakaki V, Chaniotakis N (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853. doi:10.1016/j.bios.2006.11.024

    Article  CAS  PubMed  Google Scholar 

  • Varshney M, Li Y (2007) Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle- antibody conjugates for detection of Escherichia coli O157: H7 in food samples. Biosens Bioelectron 22:2408–2414. doi:10.1016/j.bios.2006.08.030

    Article  CAS  PubMed  Google Scholar 

  • Varshney M, Li Y, Srinivasan B, Tung S (2007) A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157: H7 in food samples. Sensor Actuat B-Chem 128:99–107. doi:10.1016/j.snb.2007.03.045

    Article  CAS  Google Scholar 

  • Vasimalai N, John SA (2013) Picomolar melamine enhanced the fluorescence of gold nanoparticles: Spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped gold nanoparticles. Biosens Bioelectron 42:267–272. doi:10.1016/j.bios.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  • Vermeir S, Nicolai BM, Jans K, Maes G, Lammertyn J (2007) High-throughput microplate enzymatic assays for fast sugar and acid quantification in apple and tomato. J Agric Food Chem 55:3240–3248. doi:10.1021/jf0637022

    Article  CAS  PubMed  Google Scholar 

  • Vermeiren L, Devlieghere F, Beest M, Kruijf N, Debevere J (1999) Developments in the active packaging of foods. Trends Food Sci Tech 10:77–86. doi:10.1016/S0924-2244(99)00032-1

    Article  CAS  Google Scholar 

  • Verstrepen KJ, Iserentant D, Malcorps P, Derdelinckx G, Dijck PV, Winderickx J, Pretorius IS, Thevelein JM, Delvaux FR (2004) Glucose and sucrose: hazardous fast-food for industrial yeast? Trends Biotechnol 22:531–537. doi:10.1016/j.tibtech.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  • Villamizar RA, Maroto A, Rius FX, Inza I, Figueras MJ (2008) Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. Biosens Bioelectron 24:279–283. doi:10.1016/j.bios.2008.03.046

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Li Z (2008) Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sensor Actuat B-Chem 133:607–612. doi:10.1016/j.snb.2008.03.023

    Article  CAS  Google Scholar 

  • Wang SG, Zhang Q, Wang R, Yoon SF (2003) A novel multi-walled carbon nanotube-based biosensor for glucose detection. Biochem Biophy Res Co 311:572–576. doi:10.1016/j.bbrc.2003.10.031

    Article  CAS  Google Scholar 

  • Wang Y, Wei W, Zeng J, Liu X, Zeng X (2008) Fabrication of a copper nanoparticle/chitosan/carbon nanotube-modified glassy carbon electrode for electrochemical sensing of hydrogen peroxide and glucose. Microchim Acta 160:253–260. doi:10.1007/s00604-007-0844-6

    Article  CAS  Google Scholar 

  • Wang L, Chen W, Xu D, Shim BS, Zhu Y, Sun F, Liu L, Peng C, Jin Z, Xu C, Kotov NA (2009) Simple, rapid, sensitive and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA. Nano Lett 9:4147–4152. doi:10.1021/nl902368r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JJ, Liu BH, Hsu YT, Yu FY (2011) Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1 in milk. Food Control 22:964–969. doi:10.1016/j.foodcont.2010.12.003

    Article  CAS  Google Scholar 

  • Wang L, Gao P, Bao D, Wang Y, Chen Y, Chang C, Li G, Yang P (2014) Synthesis of crystalline/amorphous core/shell MoO3 composites through a controlled dehydration route and their enhanced ethanol sensing properties. Cryst Growth Des 14:569–575. doi:10.1021/cg401384t

    Article  CAS  Google Scholar 

  • Wang YC, Lu L, Gunasekaran S (2015a) Gold nanoparticle-based thermal history indicator for monitoring low-temperature storage. Microchim Acta 182:1305–1311. doi:10.1007/s00604-015-1451-6

    Article  CAS  Google Scholar 

  • Wang M, Duong B, Fenniria H, Su M (2015b) Nanomaterial-based barcodes. Nanoscale 7:11240–11247. doi:10.1039/C5NR01948F

    Article  CAS  PubMed  Google Scholar 

  • Wei SH, Zhao FQ, Xu ZY, Zeng BZ (2006) Voltammetric determination of folic acid with a multi-walled carbon nanotube-modified gold electrode. Microchim Acta 152:285–290. doi:10.1007/s00604-005-0437-1

    Article  CAS  Google Scholar 

  • Welch CM, Banks CE, Simm AO, Compton RG (2005) Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electron-analytical detection of hydrogen peroxide. Anal Bioanal Chem 382:12–21. doi:10.1007/s00216-005-3205-5

    Article  CAS  PubMed  Google Scholar 

  • Wilson AD (2013) Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 13:2295–2348. doi:10.3390/s130202295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9:5099–5148. doi:10.1088/0031-8949/85/03/035701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y (2010) Electrocatalysis and sensitive determination of Sudan I at the single-walled carbon nanotubes and iron(III)-porphyrin modified glassy carbon electrodes. Food Chem 121:580–584. doi:10.1016/j.foodchem.2009.12.051

    Article  CAS  Google Scholar 

  • Wu M, Tang W, Gu J, Wang Q, He P, Fang Y (2013a) Electrochemical detection of Sudan I using a multi-walled carbon nanotube/chitosan composite modified glassy carbon electrode. Am J Anal Chem 4:1–6. doi:10.4236/ajac.2013.46A001

    Article  CAS  Google Scholar 

  • Wu RJ, Lin DJ, Yu MR, Chen MH, Lai HF (2013b) Ag@SnO2 core-shell material for use in fast-response ethanol sensor at room operating temperature. Sens Actuat B-Chem 178:185–191. doi:10.1016/j.snb.2012.12.052

    Article  CAS  Google Scholar 

  • Xiao F, Ruan C, Liu L, Yan R, Zhao F, Zeng B (2008) Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid. Sensor Actuat B-Chem 134:895–901. doi:10.1016/j.snb.2008.06.037

    Article  CAS  Google Scholar 

  • Xiulan S, Xiaolian Z, Jian T, Zhou J, Chu FS (2005) Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1. Int J Food Microbiol 99:185–194. doi:10.1016/j.ijfoodmicro.2004.07.021

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Lu H (2015) One-pot synthesis of mesoporous structured ratiometric fluorescence molecularly imprinted sensor for highly sensitive detection of melamine from milk samples. Biosens Bioelectron 73:160–166. doi:10.1016/j.bios.2015.05.064

    Article  CAS  PubMed  Google Scholar 

  • Yam KL, Takhistov PT, Miltz J (2005) Intelligent packaging: concepts and applications. J Food Sci 70:R1–R10. doi:10.1111/j.1365-2621.2005.tb09052.x

    Article  CAS  Google Scholar 

  • Yan Z, Zhao J, Qin L, Mu F, Wang P, Feng X (2013) Non-enzymatic hydrogen peroxide sensor based on a gold electrode modified with granular cuprous oxide nanowires. Microchim Acta 180:145–150. doi:10.1007/s00604-012-0916-0

    Article  CAS  Google Scholar 

  • Yang L, Li Y (2006) Simultaneous detection of Escherichia coli O157:H7 and Salmonella typhimurium using quantum dots as fluorescence labels. Analyst 131:394–401. doi:10.1039/B510888H

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Qu L, Wimbrow A, Jiang X, Sun Y (2007) Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. Int J Food Microbiol 118:132–138. doi:10.1016/j.ijfoodmicro.2007.06.019

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Zhu L, Jiang X (2010) Electrochemical reaction mechanism and determination of Sudan I at a multi wall carbon nanotubes modified glassy carbon electrode. J Electroanal Chem 640:17–22. doi:10.1016/j.jelechem.2009.12.022

    Article  CAS  Google Scholar 

  • Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2004) Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem Commun 6:66–70. doi:10.1016/j.elecom.2003.10.013

    Article  CAS  Google Scholar 

  • Yemini M, Reches M, Gazit E, Rishpon J (2005) Peptide nanotube-modified electrodes for enzyme-biosensor applications. Anal Chem 77:5155–5159. doi:10.1021/ac050414g

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Zhou Y, Meng X, Tang T, Aia S, Zhu L (2011) Electrochemical behaviour of Sudan I at Fe3O4 nanoparticles modified glassy carbon electrode and its determination in food samples. Food Chem 127:1348–1353. doi:10.1016/j.foodchem.2011.01.097

    Article  CAS  PubMed  Google Scholar 

  • Zamolo VA, Valenti G, Venturelli E, Chaloin O, Marcaccio M, Boscolo S, Castagnola V, Sosa S, Berti F, Fontanive G, Poli M, Tubaro A, Bianco A, Paolucci F, Prato M (2012) Highly sensitive electrochemiluminescent nanobiosensor for the detection of palytoxin. ACS Nano 6:7989–7997. doi:10.1021/nn302573c

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Roberts S, Xia Y (2010) Nanocrystal-based time-temperature indicators. Chem Eur J 16:12559–12563. doi:10.1002/chem.201002665

    Article  CAS  PubMed  Google Scholar 

  • Zhang WH, Zhang WD (2008) Fabrication of SnO2-ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes. Sensor Actuat B-Chem 134:403–408. doi:10.1016/j.snb.2008.05.015

    Article  CAS  Google Scholar 

  • Zhang Q, Xie C, Zhang S, Wang A, Zhu B, Wang L, Yang Z (2005) Identification and pattern recognition analysis of Chinese liquors by doped nano ZnO gas sensor array. Sens Actuat B-Chem 110:370–376. doi:10.1016/j.snb.2005.02.017

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang S, Xie C, Zeng D, Fan C, Li D, Bai Z (2006) Characterization of Chinese vinegars by electronic nose. Sens Actuat B-Chem 119:538–546. doi:10.1016/j.snb.2006.01.007

    Article  CAS  Google Scholar 

  • Zhang W, Tang H, Geng P, Wang Q, Jin L, Wu Z (2007) Amperometric method for rapid detection of Escherichia coli by flow injection analysis using a bismuth nano-film modified glassy carbon electrode. Electrochem Commun 9:833–838. doi:10.1016/j.elecom.2006.11.019

    Article  CAS  Google Scholar 

  • Zhang Z, Lin M, Zhang S Vardhanabhuti B (2013a) Detection of aflatoxin M1 in milk by dynamic light scattering coupled with superparamagnetic beads and gold nanoprobes J Agric Food Chem 61:4520–4525. doi:dx.doi.org/10.1021/jf400043z

    Google Scholar 

  • Zhang C, Yin AX, Jiang R, Rong J, Dong L, Zhao T, Sun LD, Wang J, Chen X, Yan CH (2013b) Time temperature indicator for perishable products based on kinetically programmable Ag overgrowth on Au nanorods. ACS Nano 7:4561–4568. doi:10.1021/nn401266u

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci USA 101:15027–15032. doi:10.1073/pnas.0404806101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Xing F, Deng SA (2007) disposable amperometric enzyme immunosensor for rapid detection of Vibrio parahaemolyticus in food based on agarose/nano-Au membrane and screen-printed electrode. Electrochem Commun 9:1263–1268. doi:10.1016/j.elecom.2007.01.036

    Article  CAS  Google Scholar 

  • Zhou Y, Pan FG, Li YS, Zhang YY, Zhang JH, Lu SY, Ren HL, Liu ZS (2009) Colloidal gold probe-based immunochromatographic assay for the rapid detection of brevetoxins in fishery product samples. Biosens Bioelectron 24:2744–2747. doi:10.1016/j.bios.2009.01.034

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Li T, Huang H, Chen Y, Liu F, Huang C, Li N (2014) A dual amplification strategy for DNA detection combining bio-barcode assay and metal-enhanced fluorescence modality. Chem Commun 50:13373–13376. doi:10.1039/c4cc05554c

    Article  CAS  Google Scholar 

  • Zhu S, Dua C, Fu Y (2009) Localized surface plasmon resonance-based hybrid Au-Ag nanoparticles for detection of Staphylococcus aureus enterotoxin B. Opt Mater 31:1608–1613. doi:10.1016/j.optmat.2009.03.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

VK would like to thank University Grant Commission-GOI for fellowship as UGC-DSK Postdoctoral fellowship. PG is thankful to vice-chancellor and chancellor DAV University Jalandhar for encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vineet Kumar or Surinder Kumar Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, V., Guleria, P., Mehta, S.K. (2016). Nanoparticles to Sense Food Quality. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 3. Sustainable Agriculture Reviews, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-48009-1_6

Download citation

Publish with us

Policies and ethics