Skip to main content

Copper Nanoparticles in Agriculture: Biological Synthesis and Antimicrobial Activity

  • Chapter
  • First Online:
Nanoscience in Food and Agriculture 3

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 23))

Abstract

Copper is an essential micronutrient incorporated into many proteins and metalloenzymes, and plays a significant role in the health and nutrition of plants. Copper nanoparticles due to unique properties are more efficient than bulk copper particles in activity and functioning. Due to antimicrobial activity copper nanoparticles are finding new applications in agriculture, healthcare and industry. However there are growing concerns regarding the indiscriminate use of either copper or copper nanoparticles which can cause toxic effects to plants and other living organisms. We review here the biological synthesis of copper nanoparticle using plant extracts and microorganisms; antibacterial and antifungal activity of copper nanoparticles and the impact of copper nanoparticles on crops and pathogenic microorganisms.

Copper nanoparticles of various sizes ranging from 5 to 280 nm have been synthesized by using extracts prepared from Syzygium aromaticum, Tabernaemontana divaricate, Vitis vinifera, Aloe vera, Cassia alata, Centella asitica, Bifurcaria bifurcate, Gloriosa superba and Citrus medica. Biosynthesis of small spherical copper oxide nanoparticles ranging from 5 to 10 nm or with average size of 15 nm have been achieved by using leaf extract or latex produced by plants. Copper nanoparticles ranging from 5 to 295 nm have also been synthesized by using microorganisms both bacteria and fungi. Comparisons of microbial synthesized copper nanoparticles with those synthesized using plant extracts have shown that those synthesized by microorganisms had smaller dimension. Copper nanoparticles ranging in size from 5 to 50 nm were synthesized in about 80 % sample of microorganisms and about 70 % samples of plant extracts screened for synthesis.

Biologically-synthesized copper nanoparticles show good antibacterial and antifungal activity inhibiting the growth of pathogenic bacteria belonging to Gram positive and Gram negative genera, and plant pathogenic fungi. Growth inhibition has been seen in case Staphylococcus aureus, Enterococcus faecalis, Propionibacterium acnes, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Shigella flexneri, Proteus vulgaris and Salmonella typhimurium. Antifungal activity of copper nanoparticles against the pathogenic fungi Fusarium culmorum, Fusarium oxysporum, Fusarium graminearum and Phytophthora infestans has also been recorded. Copper nanoparticles at concentrations below 100 ppm have been reported to enhance germination and growth of some plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4:571–576. doi:10.1007/s13204-013-0233-x

    Article  CAS  Google Scholar 

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2:815–823

    CAS  Google Scholar 

  • Ahamed M, Alhadlaq HA, Khan MAM, Karuppiah P, Al-Dhabi NA (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater 2014;Article ID 637858, 1–4. doi:10.1155/2014/637858

    Google Scholar 

  • Angrasan JKVM, Subbaiya R (2014) Biosynthesis of copper nanoparticles by Vitis vinifera leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci 3(9):768–774

    Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827. doi:10.1021/es202660k

    Article  CAS  PubMed  Google Scholar 

  • Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12(18):2163–2175. doi:10.2174/0929867054637617

    Article  CAS  PubMed  Google Scholar 

  • Buffet PE, OF T, Pan JF, Berhanu D, Berhanu D, Herrenknecht C, Poirier L (2011) Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere 84(1):166–174. doi:10.1016/j.chemosphere

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Kumar A, Tomar PK (2014) Synthesis and characterization of copper nanoparticles by reducing agent. J Saudi Chem Soc 18:149–153

    Article  CAS  Google Scholar 

  • Chen Y, Wang D, Zhu X, Zheng X, Feng L (2012) Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environ Sci Technol 46:12452–12458. doi:10.1021/es302646q

    Article  CAS  PubMed  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D-Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262. doi:10.1021/cm0505244

    Article  CAS  Google Scholar 

  • Collins D, Luxton T, Kumar N, Shah S, Walker VK, Shah V (2012) Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. PLoS One 7(8):e42663. doi:10.1371/journal.pone.0042663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuevas R, Durán, N, Diez MC, Tortella, GR, Rubilar O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from Chilean forests. J Nanomater 2015, Article ID 789089, 1–7. doi:10.1155/2015/789089

    Google Scholar 

  • Devi HS, Singh TD (2014) Synthesis of copper oxide nanoparticles by a novel method and its application in the degradation of methyl orange. Adv Electron Electr Eng 4(1):83–88

    Google Scholar 

  • Ghorbani HR, Mehr FP, Poor AK (2015) Extracellular synthesis of copper nanoparticles using culture supernatants of Salmonella typhimurium. Orient J Chem 31(1):527–529. doi:10.13005/ojc/310165

    Article  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752. doi:10.1039/c3ra42118j

    Article  CAS  Google Scholar 

  • Guerrero SIC, Brito EMS, Castillo HAP, Rivero SHT, Caretta CA, Velasco AL Duran R, Borunda EO (2014) Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil. J Nanomater 2014, Article ID 148743, 1–13. doi: 10.1155/2014/148743

    Google Scholar 

  • Harne S, Sharma A, Dhaygude M, Joglekar S, Kodam K, Hudlikar M (2012) Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf B: Biointerfaces 95:284–288. doi:10.1016/j.colsurfb.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  • Hasan SS, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BL, Shouche YS (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol 6:3191–3196. doi:10.1166/jnn.2008.095

    Article  Google Scholar 

  • Honary S, Barabadi H, Gharaei-Fathabad E, Naghib F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Biostruct 7(3):999–1005

    Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229. doi:10.1186/1556-276X-9-229

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayalakshmi, Yogamoorthi A (2014) Green synthesis of copper oxide nanoparticles using aqueous extract of flowers of Cassia alata and particles characterization. Int J Nanomater Biostruct 4(4):66–71

    Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17. doi:10.1016/j.matlet.2013.10.011

    Article  CAS  Google Scholar 

  • Karimi J, Mohsenzadeh S (2015) Rapid, green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of Aloe vera. Synth React Inorg Met-Org Nano-Met Chem 45:895–898

    Article  CAS  Google Scholar 

  • Kumar B, Kumari S, Luis C, Alexis D, Yolanda A (2015) Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. J Saudi Chem Soc. doi:10.1016/j.jscs.2015.01.009

    Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mungbean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921. doi:10.1897/07-481.1

    Article  CAS  PubMed  Google Scholar 

  • Nagaonkar D, Shende S, Rai M (2015) Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa. Biotechnol Prog 31(2):557–565. doi:10.1002/btpr.2040

    Article  CAS  PubMed  Google Scholar 

  • Naika HR, Lingarajua K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H (2015) Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci 9:7–12. doi:10.1016/j.jtusci.2014.04.006

    Article  Google Scholar 

  • Nair PM, Chung IM (2014a) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162(1–3):342–352. doi:10.1007/s12011-014-0106-5

    Article  CAS  PubMed  Google Scholar 

  • Nair PMG, Chung IM (2014b) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification and molecular level changes. Environ Sci Pollut Res 21:12709–12722. doi:10.1007/s11356-014-3210-3

    Article  CAS  Google Scholar 

  • Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8(4):374–382. doi:10.3109/17435390.2013.789936

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan R, Field MR, O’Mullane AP, Smooker PM, Bhargava SK, Bansal V (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5:2300–2306. doi:10.1039/c2nr32887a

    Article  CAS  PubMed  Google Scholar 

  • Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590. doi:10.1016/j.ijantimicag.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  • Salvadori MR, Lepre LF, Ando RA, Oller Do Nascimento CA, Correa B (2013) Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mine in the Brazilian Amazon region. PLoS One 8(11):e80519. doi:10.1371/journal.pone.0080519

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvadori MR, Ando RA, Oller Do Nascimento CA, Corrêa B (2014) Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis. J Environ Sci Health A Tox Hazard Subst Environ Eng 49(11):1286–1295. doi:10.1080/10934529.2014.910067

    Article  CAS  PubMed  Google Scholar 

  • Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, Schulte S, Tooley I, van den Bosch J, Schellauf F (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9:495–509. doi:10.1039/b9pp00180h

    Article  CAS  PubMed  Google Scholar 

  • Shantkriti S, Rani P (2014) Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol App Sci 3(9):374–383

    Google Scholar 

  • Shende S, Ingle AP, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31(6):865–873. doi:10.1007/s11274-015-1840-3

    Article  CAS  PubMed  Google Scholar 

  • Singh AV, Patil R, Anand A, Milani P, WN G (2010) Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci 6:365–369. doi:10.2174/157341310791659062

    Article  CAS  Google Scholar 

  • Sivaraj R, Rahman PK, Rajiv P, Salam HA, Venckatesh R (2014) Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim Acta A Mol Biomol Spectrosc 133:178–181. doi:10.1016/j.saa.2014.05.048

    Article  CAS  PubMed  Google Scholar 

  • Song L, Vijver MG, Peijnenburg WJGM (2015) Comparative toxicity of copper nanoparticles across three Lemnaceae species. Sci Total Environ:518–519. doi:10.1016/j.scitotenv.2015.02.079

    Google Scholar 

  • Subhankari I, Nayak PL (2013) Synthesis of copper nanoparticles using Syzygium aromaticum (Cloves) aqueous extract by using green chemistry. World J Nano Sci Technol 2(1):14–17

    Google Scholar 

  • Sutradhar P, Saha M, Maiti D (2014) Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J Nanostruct Chem 4:86. doi:10.1007/s40097-014-0086-1

    Article  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM 62(12):102–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Director, ICAR-Central Arid Zone Research Institute, Jodhpur for necessary facilities and support. The financial assistance received under the project CRP on nanotechnology is duly acknowledged. The support base provided by nodal officer ICAR-CPRI, Shimla is also gratefully acknowledged. There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chand Kasana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kasana, R.C., Panwar, N.R., Kaul, R.K., Kumar, P. (2016). Copper Nanoparticles in Agriculture: Biological Synthesis and Antimicrobial Activity. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 3. Sustainable Agriculture Reviews, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-48009-1_5

Download citation

Publish with us

Policies and ethics