Advertisement

Fabrication, Characterization and Applications of Metal Oxide-Doped ZnO Hybrid Nanomaterials

  • Behzad Shahmoradi
  • K. Byrappa
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 23)

Abstract

Zinc oxide (ZnO) is a versatile material having various applications in different disciplines. ZnO is an excellent alternative for TiO2 for the photodegradation of environmental pollutants. However, pure ZnO has some drawbacks, which limits photodegradation applications. ZnO photocatalytic activity is limited to the UV region. Moreover, ZnO gets agglomerated in aqueous media. To overcome such defects, some strategies have been suggested. For instance, simultaneous doping and usage of a suitable surface modifier changes the surface chemistry of ZnO.

This chapter reviews the tailoring characteristics of ZnO through doping and surface modification. Synthesis is described with emphasis on the hydrothermal technique. The importance of organic pollutants such as azo dyes and industrial pollutants are discussed. We also review the characterization of nanomaterials, using for example powder X-ray diffraction, Fourier transmission infrared spectra, scanning electron microscopy, zeta potential, UV-Vis spectroscopy, and dynamic light scattering. Moreover, different intrinsic and extrinsic parameter affecting fabrication and application of nanomaterials are explained in detail.

Keywords

Doping Nanomaterials Photodegradation Sunlight Bandgap energy Dyes Characterization Hydrothermal Surface modification Catalyst 

References

  1. Adachi S (2005) Properties of group-IV, III–V and II–VI semiconductors. Wiley, Chicheester. doi: 10.1002/0470090340 CrossRefGoogle Scholar
  2. Adschiri T, Byrappa K (2009) Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles. In: Muramatsu A (ed) Nanohybridization of organic-inorganic materials. Springer, Berlin/Heidelberg. doi: 10.1007/978-3-540-92233-9_11 Google Scholar
  3. Battez AH, González R, Viesca JL, Fernández JE, Fernández JMD, Machado A, Chou R, Riba J (2008) CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265(3-4):422–428. doi: 10.1016/j.wear.2007.11.013 CrossRefGoogle Scholar
  4. Behnajady MA, Modirshahla N, Shokri M, Rad B (2007) Enhancement of photocatalytic activity of TiO2 nanoparticles by silver doping: photodeposition versus liquid impregnation methods. 10 Int. Conference on Environmental Science and Technology, Kos Island, Greece.Google Scholar
  5. Behnajady MA, Modirshahla N, Shokri M, Zeininezhad A, Zamani H (2009) Enhancement photocatalytic activity of ZnO nanoparticles by silver doping with optimization of photodeposition method parameters. J Environ Sci Health A 44(7):666–672. doi: 10.1080/10934520902847752 CrossRefGoogle Scholar
  6. Bloom S, Ortenburger I (1973) Pseudopotential baned structure of ZnO. Phys Status Solidi B 58(2):561–566. doi: 10.1002/pssb.2220580216 CrossRefGoogle Scholar
  7. Bunn CW (1935) The lattice-dimensions of zinc oxide. Proc Phys Soc 47:835. doi: 10.1088/0959-5309/47/5/307 CrossRefGoogle Scholar
  8. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166. doi: 10.1016/j.pcrysgrow.2007.04.001 CrossRefGoogle Scholar
  9. Byrappa K, Subramani AK, Ananda S, Rai KML, Dinesh R, Yoshimura M (2006) Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO. J Mater Sci 29(5):433–438. doi: 10.1007/BF02914073 Google Scholar
  10. Chen Y, Wang K, Lou L (2004) Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation. J Photochem Photobiol A Chem 163:281–287. doi: 10.1016/j.jphotochem.2003.12.012 CrossRefGoogle Scholar
  11. Coleman VA, Bradby JE, Jagadish C, Munroe P, Heo YW, Pearton SJ, Norton DP, Inoue M, Yano M (2005) Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire. Appl Phys Lett 86(20):203105(1-3)CrossRefGoogle Scholar
  12. Colinge JP, Colinge CA (2005) Physics of semiconductor devices. Springer, New York ISBN 10: 0387285237 / ISBN 13: 9780387285238Google Scholar
  13. Duffy JE, Anderson MA, Hill CG, Zeltner WA (2000) Photocatalytic oxidation as a secondary treatment method following wet air oxidation. Ind Eng Chem Res 39(10):3698–3706. doi: 10.1021/ie990941o CrossRefGoogle Scholar
  14. Florescu DI, Mourokh LG, Pollak FH, Look DC, Cantwell G, Li X (2002) High spatial resolution thermal conductivity of bulk ZnO (0001). J Appl Phys 91(2):890–892CrossRefGoogle Scholar
  15. Kometani N, Fujita A, Yonezawa Y (2008) Synthesis of N-doped titanium oxide by hydrothermal treatment. J Mater Sci 43(7):2492–2498. doi: 10.1007/s10853-007-2103-y CrossRefGoogle Scholar
  16. Lide DR (ed) (2002) CRC handbook of chemistry and physics, vol 86. CRC Press, New YorkGoogle Scholar
  17. Look DC, Clafin B, Alivov YI, Park S (2004) The future of ZnO light emitters. J Phys Stat Sol 201(10):2203–2212. doi: 10.1002/pssa.200404803 CrossRefGoogle Scholar
  18. Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T, Koinuma H (2001) Band gap engineering based on MgxZn1–x O and CdyZn1–y O ternary alloy films. Appl Phys Lett 78(9):1237–1239CrossRefGoogle Scholar
  19. Maleki A, Shahmoradi B (2012) Solar degradation of direct blue 71 using surface modified iron doped ZnO hybrid nanomaterials. J Water Sci Technol 65(11):1923–1928. doi: 10.2166/wst.2012.091 CrossRefGoogle Scholar
  20. Martin ST, Morrison CL, Hoffmann MR (1994) Photochemical mechanism of size-quantized vanadium-doped TiO2 particles. J Phys Chem 98(51):13695–13704. doi: 10.1021/j100102a041 CrossRefGoogle Scholar
  21. Meyer BK, Alves H, Hofmann DM, Kriegseis W, Forster D, Bertram F, Christen J, Hoffmann A, Straßburg M, Dworzak M, Haboeck U, Rodina AV (2004) Bound exciton and donor-acceptor pair recombinations in ZnO. Phys Status Solidi B 241(2):231–260. doi: 10.1002/pssb.200301962 CrossRefGoogle Scholar
  22. Özgür U, Alivov YI, Liu C, Teke A, Reshchikov MA, Douan S, Avrutin V, Cho SJ, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301–103. doi:http://dx.doi.org/10.1063/1.1992666Google Scholar
  23. Phillips JC (1973) Bonds and bands in semiconductors. Academic, New York. ISBN: 978-0-12-553350-8Google Scholar
  24. Ranade PV, Harrison DP (1981) The variable property grain model applied to the zinc oxide-hydrogen sulfide reaction. Chem Eng Sci 36:1079–1089. doi: 10.1016/0009-2509(81)80094-2 CrossRefGoogle Scholar
  25. Rössler U (1969) Energy bands of hexagonal II–VI semiconductors. Phys Rev 184(3):733–738. doi:http://dx.doi.org/10.1103/PhysRev.184.733Google Scholar
  26. Shahmoradi B, Ibrahim IA, Namratha K, Sakamoto N, Ananda S, Row TNG, Soga K, Byrappa K (2010a) Surface modification of indium doped ZnO hybrid nanoparticles with n-butylamine. Int J Chem Eng Res 2(2):107–118Google Scholar
  27. Shahmoradi B, Soga K, Ananda S, Somoshekar R, Byrappa K (2010b) Modification of neodymium doped ZnO hybrid nanoparticles under mild hydrothermal conditions. Nanoscale 2(7):1160–1164. doi: 10.1039/C0NR00069H CrossRefPubMedGoogle Scholar
  28. Shahmoradi B, Maleki A, Byrappa K (2011a) Photocatalytic degradation of amaranth and brilliant blue FCF dyes using in situ modified tungsten doped TiO2 hybrid nanoparticles. Catal Sci Technol 1(7):1216–1223. doi: 10.1039/C1CY00023C CrossRefGoogle Scholar
  29. Shahmoradi B, Namratha K, Byrappa K, Soga K, Ananda S, Somashekar R (2011b) Enhancement photocatalytic activity of modified ZnO nanoparticles with manganese additive. Chem Res Intermed 37(2–5):329–340. doi: 10.1007/s11164-011-0255-5 CrossRefGoogle Scholar
  30. Shahmoradi B, Byrappa K, Maleki A (2013) Surface modification of ZnO and TiO2 nanoparticles under mild hydrothermal conditions. Mater Sci Eng A 3(1):50–56Google Scholar
  31. Sobczyński A, Dobosz A (2001) Water purification by photocatalysis on semiconductors. Pol J Environ Stud 10(4):195–205. doi: 10.1039/CS9932200417 Google Scholar
  32. Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Smiya M, Ohtani K, Chichibu SF, Fuke S, Segawa Y, Ohno H, Koinuma K, Kawasaki M (2005) Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 4(1):42–46. doi: 10.1038/nmat1284 CrossRefGoogle Scholar
  33. Vaithianathan V, Lee, B-T, Kim SS (2005) Preparation of As doped p-type ZnO films using a Zn3As2/ZnO target with pulsed laser deposition. Appl Phys Lett 86(6):062101, 1–3. doi:http://dx.doi.org/10.1063/1.1854748Google Scholar
  34. Wahab HA, Salama AA, El-Saeid AA, Nur O, Willander M, Battisha IK (2013) Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique. Results Phys 3:46–51Google Scholar
  35. Xu Q, Wang X, Dong X, Ma C, Zhang X, Ma H (2015) Improved visible light photocatalytic activity for TiO2 nanomaterials by codoping with zinc and sulfur. J Nanomater Article ID 157383. doi:http://dx.doi.org/10.1155/2015/157383Google Scholar
  36. Yoshimura M, Suda H (1994) Hydrothermal processing of hydroxyapatite: past, present, and future. In: Brown PW, Constanz B (eds) Hydroxyapatite and related materials. CRC Press Inc, Boca Raton, pp 45–72. ISBN 9780849347504Google Scholar
  37. Zhang Z, Wang CC, Zakaria R, Ying JY (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102(52):10871–10878. doi: 10.1021/jp982948+ CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Environmental Health Research CenterKurdistan University of Medical SciencesSanandajIran
  2. 2.Department of Earth SciencesUniversity of Mysore, ManasagangothriMysoreIndia

Personalised recommendations