Skip to main content

Vertically Integrated Non-hydrostatic Free Surface Flow Equations

  • Chapter
  • First Online:
Non-Hydrostatic Free Surface Flows

Abstract

Vertically integrated mass and momentum equations for unsteady non-hydrostatic flows over 3D terrain of a continuum mixture of fluids and solids are presented, thereby assuming material surfaces on the bottom and the top of the flowing layer. These are presented as evolution equations of the velocity field and stress tensor. Subsequently, the general method to mathematically determine the distributions of the vertical velocity and vertical non-hydrostatic stress is presented. Under the shallow flow approximation, use of depth-independent predictors for the velocity components in the horizontal plane, following Serre (La Houille Blanche 8(6–7):374–388; 8(12):830–887, 1953), provides closure to the computation of the velocity field. Using the stress tensor for turbulent clear-water flows, the particular one-dimensional problems of the undular (potential) bore propagation over horizontal topography and turbulent-uniform open-channel flows on a steep slope are presented. Steady potential flows over curved beds, and turbulent flows in undular jumps, are also discussed. The effect of movable beds on non-hydrostatic depth-averaged modelling is presented using Exner’s equation, assuming that the bed load is the dominant sediment transport mode. The conservation equations are presented in a compact conservative form, suitable for constructing numerical schemes using modern shock-capturing methods. Examples of suitable numerical schemes to solve the equations are discussed. Fawer’s (Etude de quelques écoulements permanents à filets courbes (Study of some steady flows with curved streamlines), 1937) theory and the weighted residual method (Steffler and Jin in Journal of Hydraulic Research 31(1):5–17, 1993) are used to highlight techniques to produce higher-order models not limited by the assumption of depth-independent velocity components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fawer (1937), Iwasa (1955, 1956), Iwasa and Kennedy (1968), Mandrup-Andersen (1975, 1978), Marchi (1963, 1992, 1993), Matthew (1963, 1991), Engelund and Hansen (1966), Basco (1983), Hager (1983), Hager and Hutter (1984a, b), Montes (1986), Berger and Carey (1998a, b), Soares-Frazão and Zech (2002), Mohapatra and Chaudhry (2004), Dewals et al. (2006), Bose and Dey (2007, 2009), Chaudhry (2008), Castro-Orgaz and Hager (2009), Denlinger and O’Connel (2008).

  2. 2.

    Mei (1983), Antunes do Carmo et al. (1993), Nwogu (1993), Chen and Liu (1995), Wei et al. (1995), Wei and Kirby (1995), Madsen et al. (1997), Madsen and Schäffer (1998), Stansby and Zhou (1998), Chen et al. (1999, 2003), Kennedy et al. (2000), Lynett et al. (2002), Stansby (2003), Erduran et al. (2005), Musumeci et al. (2005), Lynett (2006), Chen (2006), Soares-Frazão and Guinot (2008), Mignot and Cienfuegos (2008), Kim et al. (2009), Kim and Lynett (2011), Brocchini (2013).

  3. 3.

    Examples in hydraulic engineering were studied by Boussinesq (1877), Yen (1973), Steffler and Jin (1993), Liggett (1994), Vreugdenhil (1994), Khan and Steffler (1996a, b), Jain (2001), whereas in rapid gravity-driven mass flows the scene has been set by Hutter and Savage (1988), Savage and Hutter (1989, 1991), Iverson (1997, 2005), Denlinger and Iverson (2004). For a review, see e.g., Pudasaini and Hutter (2007).

Abbreviations

a :

Shallow water wave celerity based on enhanced gravity (m/s)

A :

Finite volume area (m2)

CFL :

Courant–Friedrichs–Lewy number (–)

D :

Representative particle diameter (m)

f :

Weighting function (m)

F :

Vector of fluxes in x-direction (m2/s, m3/s2)

F i+1/2 :

Numerical flux in x-direction at cell interface (m2/s, m3/s2)

g :

Gravity acceleration (m/s2)

g′:

Enhanced gravity acceleration (m/s2)

G :

Vector of fluxes in y-direction (m2/s, m3/s2)

h :

Vertical flow depth (m)

h*:

Flow depth at star region in HLL Riemann solver (m)

H :

Vertical length scale (m)

i :

x-index for finite volume cell (–)

I :

Auxiliary variable (m2/s)

k :

Time index (–)

K :

Fawer exponent (–)

L :

Horizontal length scale (m)

M :

Momentum function (m2)

n :

Curvilinear coordinate normal to channel bottom (m) also bed porosity (–)

N :

Flow depth normal to channel bottom (m)

p :

Fluid pressure (N/m2)

p 1 :

Bottom pressure in excess of hydrostatic pressure (N/m2)

p 2 :

Midpressure in excess of pressure average at bottom and surface elevation (N/m2)

q :

Unit discharge (m2/s)

q b :

Unit bed load (m2/s)

q x :

Unit discharge in x-direction (m2/s)

q y :

Unit discharge in y-direction (m2/s)

q K :

Signal speed factor in HLL solver (–)

R :

Submerged specific gravity (–)

R ep :

Particle Reynolds number (–)

s :

Curvilinear coordinate along channel bed (m)

S o :

Bottom slope (–)

S f :

Friction slope (–)

S L :

Speed of left signal in HLL Riemann solver (m/s)

S R :

Speed of right signal in HLL Riemann solver (m/s)

S :

Vector of source terms (m/s, m2/s2)

t :

Time (s)

T ij :

Depth-averaged Reynolds stress (N/m2) with (i, j) = (x, y)

T :

Stress tensor (N/m2)

u :

Velocity in x-direction (m/s)

u :

Depth-averaged velocity vector (m/s, m/s)

u 1 :

Velocity at surface in excess of mean (m/s)

U :

Depth-averaged flow velocity in x-direction (m/s)

U :

Vector of conserved variables (m, m2/s)

v :

Velocity in y-direction (m/s)

V :

Depth-averaged flow velocity in y-direction also modulus of velocity (m/s)

w :

Velocity in z-direction (m/s)

\( \bar{w} \) :

Depth-averaged flow velocity in z-direction (m/s)

w 2 :

Middepth vertical velocity in excess of average (m/s)

x :

Horizontal coordinate (m)

y :

Horizontal coordinate normal to x (m)

z :

Vertical coordinate (m)

z b :

Bed elevation (m)

γ :

Specific weight of water (N/m3)

γ s :

Specific weight of solids (N/m3)

ε :

Shallowness parameter (–)

η :

Vertical distance above channel bottom (m)

θ :

Angle of bottom with horizontal (rad)

κ :

Streamline curvature (m−1)

\( \bar{\kappa } \) :

Depth-averaged streamline curvature (m−1)

λ :

Dispersive factor (–)

υ :

Kinematic viscosity (m2/s)

ρ :

Density (kg/m3)

σ ij :

Turbulent Reynolds stress, with (i, j) = (x, y, z) (N/m2)

τ b :

Boundary shear stress along bed in s-direction (N/m2)

τ ij :

Stress in continuum medium, with (i, j) = (x, y, z) (N/m2)

ω :

Weighting parameter (–)

Ω :

Control volume (m3)

s :

Relative to free surface

b :

Relative to bottom

L :

Relative to left state in Riemann problem

R :

Relative to right state in Riemann problem

*:

Relative to dimensionless quantity

References

  • Abbott, M. B. (1979). Computational hydraulics: Elements of the theory of free surface flows. London: Pitman.

    Google Scholar 

  • Ancey, C. (2010). Stochastic modelling in sediment dynamics: Exner equation for planar incipient bed load transport conditions. Journal of Geophysical Research, 115, F00A11. doi:10.1029/2009JF001260

  • Andreotti, B., Forterre, Y., & Pouliquen, O. (2013). Granular media: Between fluid and solid. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Antunes do Carmo, J. S., Santos, F. J., & Almeida, A. B. (1993). Numerical solution of the generalized Serre equations with the MacCormack finite difference scheme. International Journal for Numerical Methods in Fluids, 16(8), 725–738.

    Google Scholar 

  • ASCE Task Committee on flow and transport over dunes. (2002). Flow and transport over dunes. Journal of Hydraulic Engineering, 128(8), 726–728.

    Google Scholar 

  • Bagnold, R. A. (1973). The nature of saltation and of ‘bed-load’ transport in water. Proceedings of the Royal Society of London. Series A, 332, 473–504.

    Article  Google Scholar 

  • Barthelemy, E. (2004). Nonlinear shallow water theories for coastal waters. Surveys In Geophysics, 25, 315–337.

    Article  Google Scholar 

  • Basco, D. R. (1983). Computation of rapidly varied, unsteady free surface flow. Water Resources Investigation Report 83-4284. Reston VA: US Geological Survey.

    Google Scholar 

  • Benjamin, T. B., & Lighthill, M. J. (1954). On cnoidal waves and bores. Proceedings of the Royal Society of London. Series A, 224, 448–460.

    Article  Google Scholar 

  • Berger, R. C., & Carey, G. F. (1998a). Free-surface flow over curved surfaces. Part I: Perturbation analysis. International Journal for Numerical Methods in Fluids, 28, 191–200.

    Article  Google Scholar 

  • Berger, R. C., & Carey, G. F. (1998b). Free-surface flow over curved surfaces. Part II: Computational model. International Journal for Numerical Methods in Fluids, 28, 201–213.

    Article  Google Scholar 

  • Bonneton, P., Barthelemy, E., Chazel, F., Cienfuegos, R., Lannes, D., Marche, F., et al. (2011). Recent advances in Serre-Green Naghdi modelling for wave transformation, breaking and runup processes. The European Journal of Mechanics—B/Fluids, 30, 589–597.

    Article  Google Scholar 

  • Bose, S. K., & Dey, S. (2007). Curvilinear flow profiles based on Reynolds averaging. Journal of Hydraulic Engineering, 133(9), 1074–1079.

    Article  Google Scholar 

  • Bose, S. K., & Dey, S. (2009). Reynolds averaged theory of turbulent shear flows over undulating beds and formation of sand waves. Physical Review E, 80(3), 036304-1–036304-9.

    Google Scholar 

  • Boussinesq, J. (1872). Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond (Theory of waves and disturbances propagating along a rectangular horizontal channel, generating nearly uniform velocities from the surface to the bottom). Journal de Mathématiques Pures et Appliquées (Série 2), 17, 55–108 (in French).

    Google Scholar 

  • Boussinesq, J. (1877). Essai sur la théorie des eaux courantes (Essay on the theory of water flow). Mémoires présentés par divers savants à l’Académie des Sciences, Paris, 23, 1–680. (in French).

    Google Scholar 

  • Brocchini, M. (2013). A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics. Proceedings of the Royal Society of London. Series A, 469, 20130496.

    Article  Google Scholar 

  • Buffington, J. M., & Montgomery, D. R. (1997). A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resources Research, 33(8), 1993–2029.

    Article  Google Scholar 

  • Cantero-Chinchilla, F. N., Castro-Orgaz, O., Dey, S., & Ayuso, J. L. (2016a). Nonhydrostatic dam break flows I: Physical equations and numerical schemes. Journal of Hydraulic Engineering, 142(12), 04016068.

    Google Scholar 

  • Cantero-Chinchilla, F. N., Castro-Orgaz, O., Dey, S., & Ayuso, J. L. (2016b). Nonhydrostatic dam break flows II: One-dimensional depth-averaged modelling for movable bed flows. Journal of Hydraulic Engineering, 142(12), 0416069.

    Google Scholar 

  • Carter, J. D., & Cienfuegos, R. (2011). The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations. The European Journal of Mechanics—B/Fluids, 30(5–6), 259–268.

    Article  Google Scholar 

  • Castro-Orgaz, O., Giráldez, J. V., & Mateos, L. (2013). Second-order shallow flow equation for anisotropic aquifers. Journal of Hydrology, 501, 183–185.

    Article  Google Scholar 

  • Castro-Orgaz, O., Giráldez, J. V., & Robinson, N. (2012). Second order two-dimensional solution for the drainage of recharge based on Picard’s iteration technique: A generalized Dupuit-Forchheimer equation. Water Resources Research, 48, W06516. doi:10.1029/2011WR011751

  • Castro-Orgaz, O., & Hager, W. H. (2009). Curved streamline transitional flow from mild to steep slopes. Journal of Hydraulic Research, 47(5), 574–584.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2011a). Joseph Boussinesq and his theory of water flow in open channels. Journal of Hydraulic Research, 49(5), 569–577.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2011b). Turbulent near-critical open channel flow: Serre’s similarity theory. Journal of Hydraulic Engineering, 137(5), 497–503.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2011c). Observations on undular jump in movable bed. Journal of Hydraulic Engineering, 49(5), 689–692.

    Google Scholar 

  • Castro-Orgaz, O., Hutter, K., Giráldez, J. V., & Hager, W. H. (2015). Non-hydrostatic granular flow over 3D terrain: New Boussinesq-type gravity waves? Journal of Geophysical Research—Earth Surface, 120(1), 1–28.

    Article  Google Scholar 

  • Chanson, H. (2000). Boundary shear stress measurements in undular flows: Application to standing wave bed forms. Water Resources Research, 36(10), 3063–3076.

    Article  Google Scholar 

  • Chaudhry, M. H. (2008). Open-channel flow (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Chen, Q. (2006). Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. The Journal of Engineering Mechanics, 132(2), 220–230.

    Article  Google Scholar 

  • Chen, Q., Kirby, J. T., Dalrymple, R. A., Kennedy, A. B., & Haller, C. M. (1999). Boussinesq modeling of a rip current system. Journal of Geophysical Research, 104(C9), 20617–20637.

    Article  Google Scholar 

  • Chen, Q., Kirby, J. T., Dalrymple, R. A., Shi, F., & Thornton, E. B. (2003). Boussinesq modeling of longshore currents. Journal of Geophysical Research, 108(C11), 3362–3380.

    Article  Google Scholar 

  • Chen, Y., & Liu, P. L. F. (1995). Modified Boussinesq equations and associated parabolic models for water wave propagation. Journal of Fluid Mechanics, 288, 351–381.

    Article  Google Scholar 

  • Chow, V. T. (1959). Open channel hydraulics. New York: McGraw-Hill.

    Google Scholar 

  • Cienfuegos, R., Barthélemy, E., & Bonneton, P. (2006). A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I: Model development and analysis. International Journal for Numerical Methods in Fluids, 51(11), 1217–1253.

    Google Scholar 

  • De Saint-Venant, A. B. (1871). Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction des marrées dans leur lit (Theory of unsteady water movement, applied to floods in rivers and the effect of tidal flows). Comptes Rendus de l’Académie des Sciences, 73, 147–154; 73, 237–240 (in French).

    Google Scholar 

  • Denlinger, R. P., & Iverson, R. M. (2004). Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. Journal of Geophysical Research, 109(F1), F01014. doi:10.1029/2003JF000085

  • Denlinger, R. P., & O’Connell, D. R. H. (2008). Computing nonhydrostatic shallow-water flow over steep terrain. Journal of Hydraulic Engineering, 134(11), 1590–1602.

    Article  Google Scholar 

  • Dewals, B. J., Erpicum, S., Archambeau, P., Detrembleur, S., & Pirotton, M. (2006). Depth-integrated flow modelling taking into account bottom curvature. Journal of Hydraulic Research, 44(6), 785–795.

    Google Scholar 

  • Dey, S. (2014). Fluvial hydrodynamics: Hydrodynamic and sediment transport phenomena. Berlin: Springer.

    Book  Google Scholar 

  • Dias, F., & Milewski, P. (2010). On the fully non-linear shallow-water generalized Serre equations. Physics Letters A, 374, 1049–1053.

    Article  Google Scholar 

  • Dressler, R. F. (1978). New nonlinear shallow flow equations with curvature. Journal of Hydraulic Research, 16(3), 205–222.

    Article  Google Scholar 

  • Einstein, H. A. (1950). The bed-load function for sediment transportation in open channel flows. USDA Technical Bulletins, 1026. Washington D.C.

    Google Scholar 

  • Engelund, F., & Fredsoe, J. (1976). A sediment transport model for straight alluvial channels. Nordic Hydrology, 7(5), 293–306.

    Google Scholar 

  • Engelund, F., & Fredsoe, J. (1982). Sediment ripples and dunes. Annual Review of Fluid Mechanics, 14, 13–37.

    Article  Google Scholar 

  • Engelund, F., & Hansen, E. (1966). Investigations of flow in alluvial streams. Hydraulic Laboratory Bulletin 9. Copenhagen: Technical University of Denmark.

    Google Scholar 

  • Erduran, K. S., Ilic, S., & Kutija, V. (2005). Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations. International Journal for Numerical Methods in Engineering, 49(11), 1213–1232.

    Article  Google Scholar 

  • Fawer, C. (1937). Etude de quelques écoulements permanents à filets courbes (Study of some steady flows with curved streamlines). Thesis, Université de Lausanne, La Concorde, Lausanne, Switzerland (in French).

    Google Scholar 

  • Fenton, J. D. (1996). Channel flow over curved boundaries and a new hydraulic theory. Proceedings of the 10th IAHR APD Congress, Langkawi, Malaysia (pp. 266–273).

    Google Scholar 

  • Fenton, J. D., & Zerihun, Y. T. (2007). A Boussinesq approximation for open channel flow. Proceedings of the 32th IAHR Congress, Venice, Italy, published on CD.

    Google Scholar 

  • Friedrichs, K. O. (1948). On the derivation of the shallow water theory. Communications on Pure and Applied Mathematics, 1(1), 81–87.

    Google Scholar 

  • Furbish, D. J., Haff, P. K., Roseberry, J. C., & Schmeeckle, M. W. (2012). A probabilistic description of the bed load sediment flux: 1. Theory. Journal of Geophysical Research, 117, F03031. doi:10.1029/2012JF002352

  • García, M. H. (2008). Sedimentation engineering: Processes, measurements, modeling, and practice. ASCE Manual of practice, 110. Reston, VA.

    Google Scholar 

  • Graf, W. H., & Altinakar, M. S. (1996). Hydraulique fluviale: Écoulement non-permanent et phénomènes de transport (Fluvial hydraulics: Unsteady flow and transport phenomena). Paris: Eyrolles (in French).

    Google Scholar 

  • Green, A. E., & Naghdi, P. M. (1976). A derivation of equations for wave propagation in water of variable depth. Journal of Fluid Mechanics, 78, 237–246.

    Article  Google Scholar 

  • Guinot, V. (2003). Riemann solvers and boundary conditions for two dimensional shallow water simulations. International Journal for Numerical Methods in Engineering, 41(11), 1191–1219.

    Article  Google Scholar 

  • Hager, W. H. (1983). Hydraulics of plane free overfall. Journal of Hydraulic Engineering, 109(12), 1683–1697.

    Article  Google Scholar 

  • Hager, W. H., & Hager, K. (1985). Streamline curvature effects in distribution channels. Proceedings of IME, 199(3), 165–172.

    Article  Google Scholar 

  • Hager, W. H., & Hutter, K. (1984a). Approximate treatment of plane channel flow. Acta Mechanica, 51(3–4), 31–48.

    Article  Google Scholar 

  • Hager, W. H., & Hutter, K. (1984b). On pseudo-uniform flow in open channel hydraulics. Acta Mechanica, 53(3–4), 183–200.

    Article  Google Scholar 

  • Henderson, F. M. (1966). Open channel flow. New York: MacMillan.

    Google Scholar 

  • Hervouet, J. M. (2007). Hydrodynamics of free surface flows: Modelling with the finite element method. New York: Wiley & Sons.

    Book  Google Scholar 

  • Hosoda, T., & Tada, A. (1994). Free surface profile analysis on open channel flow by means of 1-D basic equations with effect of vertical acceleration. Annual Journal of Hydraulics Engineering. JSCE, 38, 457–462 (in Japanese).

    Google Scholar 

  • Hutter, K., & Castro-Orgaz, O. (2016). Non-hydrostatic free surface flows: Saint Venant versus Boussinesq depth integrated dynamic equations for river and granular flows (Chapter 17). In Continuous media with microstructure 2 (pp. 245–265). Berlin: Springer.

    Google Scholar 

  • Hutter, K., & Jőhnk, K. (2004). Continuum methods of physical modeling: Continuum mechanics, dimensional analysis, turbulence. Berlin: Springer.

    Book  Google Scholar 

  • Hutter, K., & Savage, S. B. (1988). Avalanche dynamics: The motion of a finite mass of gravel down a mountain side. Proceedings of the 5th International Symposium on Landslides, Lausanne (pp. 691–697).

    Google Scholar 

  • Hutter, K., & Wang, Y. (2016). Fluid and thermodynamics 1: Basic fluid mechanics, 2: Advanced fluid mechanics and thermodynamics. Berlin: Springer.

    Google Scholar 

  • Iverson, R. M. (1997). The physics of debris flows. Reviews of Geophysics, 35(3), 245–296.

    Article  Google Scholar 

  • Iverson, R. M. (2005). Debris-flow mechanics. In M. Jakob & O. Hungr (Eds.), Debris flow hazards and related phenomena (pp. 105–134). Heidelberg: Springer.

    Google Scholar 

  • Iwasa, Y. (1955). Undular jump and its limiting conditions for existence. Proceedings of the 5th Japan national congress in applied mechanics II, 14, 315–319.

    Google Scholar 

  • Iwasa, Y. (1956). Analytical considerations on cnoidal and solitary waves. Transactions of Japan Society of Civil Engineers, 32, 43–49.

    Article  Google Scholar 

  • Iwasa, Y., & Kennedy, J. F. (1968). Free surface shear flow over a wavy bed. Journal of the Hydraulics Division, 94(HY2), 431–454.

    Google Scholar 

  • Jain, S. C. (2001). Open channel flow. New York: Wiley & Sons.

    Google Scholar 

  • Kennedy, J. F. (1963). The mechanics of dunes and antidunes in erodible-bed channels. Journal of Fluid Mechanics, 16, 521–544.

    Article  Google Scholar 

  • Kennedy, A. B., Chen, Q., Kirby, J. T., & Dalrymple, R. A. (2000). Boussinesq modeling of wave transformation, breaking, and run-up. Part I: 1D. Journal of Waterway Port Coastal and Ocean Engineering, 126(1), 39–47.

    Google Scholar 

  • Khan, A. A., & Lai, W. (2014). Modelling shallow water flows using the discontinuous Galerkin method. London: CRC Press, Taylor and Francis.

    Google Scholar 

  • Khan, A. A., & Steffler, P. M. (1996a). Modelling overfalls using vertically averaged and moment equations. Journal of Hydraulic Engineering, 122(7), 397–402.

    Article  Google Scholar 

  • Khan, A. A., & Steffler, P. M. (1996b). Vertically averaged and moment equations model for flow over curved beds. Journal of Hydraulic Engineering, 122(1), 3–9.

    Article  Google Scholar 

  • Kim, D.-H., & Lynett, P. J. (2011). Dispersive and nonhydrostatic pressure effects at the front of surge. Journal of Hydraulic Engineering, 137(7), 754–765.

    Article  Google Scholar 

  • Kim, D.-H., Lynett, P. J., & Socolofsky, S. (2009). A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows. Ocean Modelling, 27(3–4), 198–214.

    Article  Google Scholar 

  • Lajeunesse, E., Malverti, L., & Charru, F. (2010). Bed load transport in turbulent flow at the grain scale: Experiments and modelling. Journal of Geophysical Research, 115, F04001. doi:10.1029/2009JF001628

  • Lannes, D., & Bonneton, P. (2009). Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation. Physics of Fluids, 21(1), 016601, 9 pp.

    Google Scholar 

  • LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Liggett, J. A. (1994). Fluid mechanics. New York: McGraw-Hill.

    Google Scholar 

  • Lynett, P. J. (2006). Wave breaking effects in depth-integrated models. Coastal Engineering, 53(4), 325–333.

    Article  Google Scholar 

  • Lynett, P., Wu, T. R., & Liu, P. L.-F. (2002). Modeling wave runup with depth-integrated equations. Coastal Engineering, 46(2), 89–107.

    Article  Google Scholar 

  • Ma, G., Fengyang, S., & Kirby, J. T. (2012). Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling, 43–44, 22–35.

    Article  Google Scholar 

  • Madsen, P. A., & Schäffer, H. A. (1998). Higher-order Boussinesq-type equations for surface gravity waves: Derivation and analysis. Philosophical Transactions of the Royal Soceity of London. Series A, 356, 3123–3184.

    Article  Google Scholar 

  • Madsen, P. A., Sorensen, O. R., & Schäffer, H. A. (1997). Surf zone dynamics simulated by a Boussinesq type model. I. Model description and cross-shore motion of regular waves. Coastal Engineering, 32(4), 255–287.

    Google Scholar 

  • Mandrup-Andersen, V. (1975). Transition from subcritical to supercritical flow. Journal of Hydraulic Research, 13(3), 227–238.

    Article  Google Scholar 

  • Mandrup-Andersen, V. (1978). Undular hydraulic jump. Journal of the Hydraulics Division, ASCE 104(HY8), 1185–1188; Discussion, 105(HY9), 1208–1211.

    Google Scholar 

  • Marchi, E. (1963). Contributo allo studio del risalto ondulato (Contribution to the study of the undular hydraulic jump). G. Genio Civile, 101(9), 466–476. (in Italian).

    Google Scholar 

  • Marchi, E. (1992). The nappe profile of a free overfall. Rendiconti Lincei Matematica e Applicazioni Serie 9, 3(2), 131–140.

    Google Scholar 

  • Marchi, E. (1993). On the free overfall. Journal of Hydraulic Research, 31(6), 777–790; 32(5), 794–796.

    Google Scholar 

  • Matthew, G. D. (1963). On the influence of curvature, surface tension and viscosity on flow over round-crested weirs. Proceedings of ICE 25, 511–524; 28, 557–569.

    Google Scholar 

  • Matthew, G. D. (1991). Higher order one-dimensional equations of potential flow in open channels. Proceedings of ICE, 91(3), 187–201.

    Google Scholar 

  • Mei, C. C. (1983). The applied dynamics of ocean surface waves. New York: John Wiley.

    Google Scholar 

  • Meyer-Peter, E., & Müller, R. (1948). Formulas for bed load transport. Proceedings of the 2nd International IAHR Meeting, Stockholm, 26, 5–24.

    Google Scholar 

  • Mignot, E., & Cienfuegos, R. (2008). On the application of a Boussinesq model to river flows including shocks. Coastal Engineering, 56(1), 23–31.

    Article  Google Scholar 

  • Mohapatra, P. K., & Chaudhry, M. H. (2004). Numerical solution of Boussinesq equations to simulate dam-break flows. Journal of Hydraulic Engineering, 130(2), 156–159.

    Article  Google Scholar 

  • Molls, T., & Chaudhry, M. H. (1995). Depth averaged open channel flow model. Journal of Hydraulic Engineering, 121(6), 453–465.

    Article  Google Scholar 

  • Montes, J. S. (1986). A study of the undular jump profile. Proceedings of the 9th Australasian Fluid Mechanics Conference, Auckland (pp. 148–151).

    Google Scholar 

  • Montes, J. S. (1998). Hydraulics of open channel flow. Reston, VA: ASCE Press.

    Google Scholar 

  • Musumeci, R. E., Svendsen, I. A., & Veeramony, J. (2005). The flow in the surf zone: A fully nonlinear Boussinesq-type of approach. Coastal Engineering, 52(7), 565–598.

    Article  Google Scholar 

  • Nwogu, O. (1993). Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway Port Coastal and Ocean Engineering, 119(6), 618–638.

    Google Scholar 

  • Onda, S., & Hosoda, T. (2004). Numerical simulation of the development process of dunes and flow resistance. In Proceedings of River Flow 2004 (245–252). London: T&F.

    Google Scholar 

  • Parker, G. (1979). Hydraulic geometry of active gravel rivers. Journal of Hydraulics Division, ASCE, 105(9), 1185–1201.

    Google Scholar 

  • Peregrine, D. H. (1966). Calculations of the development of an undular bore. Journal of Fluid Mechanics, 25(2), 321–330.

    Article  Google Scholar 

  • Peregrine, D. H. (1967). Long waves on a beach. Journal of Fluid Mechanics, 27(5), 815–827.

    Article  Google Scholar 

  • Peregrine, D. H. (1972). Equations for water waves and the approximations behind them. In R. E. Meyer (Ed.), Waves on beaches and resulting sediment transport (pp. 95–122). San Diego, CA: Academic Press.

    Google Scholar 

  • Pudasaini, S. P., & Hutter, K. (2007). Avalanche dynamics. Berlin: Springer.

    Google Scholar 

  • Roache, P. J. (1976). Computational fluid dynamics. Albuquerque, NM: Hermosa Publishers.

    Google Scholar 

  • Rodi, W. (1980). Turbulence models and their application in hydraulics: A state-of-the-art review. Dordrecht: IAHR.

    Google Scholar 

  • Savage, S. B., & Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177–215.

    Article  Google Scholar 

  • Savage, S. B., & Hutter, K. (1991). The dynamics of avalanches of granular materials from initiation to runout I: Analysis. Acta Mechanica, 86(1–4), 201–223.

    Article  Google Scholar 

  • Schmocker, L. (2011). Hydraulics of dike breaching. Dissertation ETH 19983. Zürich, Switzerland: ETH Zurich.

    Google Scholar 

  • Seabra-Santos, F. J., Renouard, D. P., & Temperville, A. M. (1987). Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. Journal of Fluid Mechanics, 176, 117–134.

    Article  Google Scholar 

  • Serre, F. (1953). Contribution à l’étude des écoulements permanents et variables dans les canaux (Contribution to the study of steady and unsteady channel flows). La Houille Blanche, 8(6–7), 374–388; 8(12), 830–887 (in French).

    Google Scholar 

  • Sivakumaran, N. S., & Dressler, R. F. (1989). Unsteady density-current equations for highly curved terrain. Journal of the Atmospheric Sciences, 46(20), 3192–3201.

    Article  Google Scholar 

  • Sivakumaran, N. S., Tingsanchali, T., & Hosking, R. J. (1983). Steady shallow flow over curved beds. Journal of Fluid Mechanics, 128, 469–487.

    Article  Google Scholar 

  • Soares-Frazão, S., & Guinot, V. (2008). A second-order semi-implicit hybrid scheme for one-dimensional Boussinesq-type waves in rectangular channels. The International Journal for Numerical Methods in Fluids, 58(3), 237–261.

    Article  Google Scholar 

  • Soares-Frazão, S., & Zech, Y. (2002). Undular bores and secondary waves: Experiments and hybrid finite-volume modelling. Journal of Hydraulic Research, 40(1), 33–43.

    Article  Google Scholar 

  • Stansby, P. K. (2003). Solitary wave run up and overtopping by a semi-implicit finite-volume shallow-water Boussinesq model. Journal of Hydraulic Research, 41(6), 639–647.

    Article  Google Scholar 

  • Stansby, P. K., & Zhou, J. G. (1998). Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems. The International Journal for Numerical Methods in Fluids, 28(3), 541–563.

    Article  Google Scholar 

  • Steffler, P. M., & Jin, Y. C. (1993). Depth-averaged and moment equations for moderately shallow free surface flow. Journal of Hydraulic Research, 31(1), 5–17.

    Article  Google Scholar 

  • Su, C. H., & Gardner, C. S. (1969). KDV equation and generalizations. Part III. Derivation of Korteweg-de Vries equation and Burgers equation. Journal of Mathematical Physics, 10(3), 536–539.

    Article  Google Scholar 

  • Toro, E. F. (1997). Riemann solvers and numerical methods for fluid dynamics. Berlin: Springer.

    Book  Google Scholar 

  • Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows. New York: Wiley.

    Google Scholar 

  • Vreugdenhil, C. B. (1994). Numerical methods for shallow water flow. Dordrecht NL: Kluwer.

    Book  Google Scholar 

  • Wei, G., & Kirby, J. T. (1995). Time-dependent numerical code for extended Boussinesq equations. Journal of Waterway Port Coastal and Ocean Engineering, 121(5), 251–261.

    Google Scholar 

  • Wei, G., Kirby, J. T., Grilli, S. T., & Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves 1: Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 294, 71–92.

    Article  Google Scholar 

  • Wiberg, P., & Smith, J. D. (1989). Model for calculating bed load transport of sediment. Journal of Hydraulic Engineering, 115(1), 101–123.

    Article  Google Scholar 

  • Wieland, M., Gray, J. M. N. T., & Hutter, K. (1999). Channelised free surface flow of cohesionless granular avalanche in a chute with shallow lateral curvature. Journal of Fluid Mechanics, 392, 73–100.

    Article  Google Scholar 

  • Yalin, M. S. (1977). Mechanics of sediment transport. Oxford: Pergamon.

    Google Scholar 

  • Yen, B. C. (1973). Open-channel flow equations revisited. Journal of the Engineering Mechanics Division, ASCE, 99(EM5), 979–1009.

    Google Scholar 

  • Zerihun, Y., & Fenton, J. (2006). One-dimensional simulation model for steady transcritical free surface flows at short length transitions. Advances in Water Resources, 29(11), 1598–1607.

    Article  Google Scholar 

  • Zerihun, Y., & Fenton, J. (2007). A Boussinesq-type model for flow over trapezoidal profile weirs. Journal of Hydraulic Research, 45(4), 519–528.

    Article  Google Scholar 

  • Zhu, D. Z., & Lawrence, G. A. (1998). Non-hydrostatic effects in layered shallow water flows. Journal of Fluid Mechanics, 355, 1–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castro-Orgaz .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Castro-Orgaz, O., Hager, W.H. (2017). Vertically Integrated Non-hydrostatic Free Surface Flow Equations. In: Non-Hydrostatic Free Surface Flows. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-47971-2_2

Download citation

Publish with us

Policies and ethics