Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Non-Hydrostatic Free Surface Flows

Abstract

An introduction to Boussinesq theory for depth-averaged non-hydrostatic open-channel flows is given. A historical note is used to depict the development of this theory, starting with Boussinesq (1877) treatise, pursued and expanded by the developments of Fawer (1937), Serre (1953), Matthew (1963) and Peregrine (1966). The importance of non-hydrostatic depth-averaged free surface flow modeling is then discussed in the context of environmental fluid mechanics, including the problems of flows in control structures, seepage flows, flows in alluvial rivers, and water waves in coastal engineering, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

D :

Still water depth (m)

E :

Specific energy head (m)

F :

Flux vector (m2/s, m3/s2)

g :

Gravity acceleration (m/s2)

h :

Flow depth measured vertically (m)

H :

Energy head (m)

K :

Parameter in curvature law (–)

N :

Flow depth measured on normal to channel bottom (m)

p :

Pressure (N/m2)

p b :

Bottom pressure (N/m2)

q :

Unit discharge (m2/s)

r :

Radius of bottom curvature (m)

r z :

Radius of streamline curvature at elevation z (m)

R :

Radius of free surface curvature (m)

S :

Momentum function (m2/s)

S o :

Bottom slope (–)

S f :

Friction slope (–)

S :

Source term vector (m/s, m2/s2)

t :

Time (s) also flow depth measured as vertical projection of equipotential curve (m)

u :

Velocity in x-direction (m/s)

U :

Mean flow velocity (m/s) = q/h

U :

Vector of conserved variables (m, m2/s)

w :

Velocity in z-direction (m/s)

x :

Streamwise coordinate (m)

z :

Vertical elevation (m)

z b :

Elevation of channel bottom (m)

β :

Boussinesq velocity correction coefficient (–)

γ :

Specific weight (N/m3)

References

  • Bakhmeteff, B. A. (1912). O neravnomernom wwijenii jidkosti v otkrytom rusle (Varied flow in open channels). Russia: St Petersburg (in Russian).

    Google Scholar 

  • Bakhmeteff, B. A. (1932). Hydraulics of open channels. New York: McGraw-Hill.

    Google Scholar 

  • Bélanger, J. B. (1828). Essai sur la solution numérique de quelques problèmes relatifs au mouvement permanent des eaux courantes (Essay on the numerical solution of some problems relative to the permanent movement of water flow). Paris: Carilian-Goeury (in French).

    Google Scholar 

  • Bose, S. K., & Dey, S. (2009). Reynolds averaged theory of turbulent shear flows over undulating beds and formation of sand waves. Physical Review E, 80(3), 036304-1/036304-9.

    Google Scholar 

  • Boussinesq, J. (1877). Essai sur la théorie des eaux courantes (Essay on the theory of water flow). Mémoires présentés par divers Savants á l’Académie des Sciences, Paris, 23(1), 1–608 [in French].

    Google Scholar 

  • Brocchini, M. (2013). A reasoned overview on Boussinesq-type models: The interpaly between physics, mathematics and numerics. Proceedings of the Royal Society of London, Series A, 469, 20130496.

    Article  Google Scholar 

  • Castro-Orgaz, O. (2008). Curvilinear flow over round-crested weirs. Journal of Hydraulic Research, 46(4), 543–547.

    Article  Google Scholar 

  • Castro-Orgaz, O. (2010a). Steady open channel flows with curved streamlines: The Fawer approach revised. Environmental Fluid Mech., 10(3), 297–310.

    Article  Google Scholar 

  • Castro-Orgaz, O. (2010b). Approximate modeling of 2D curvilinear open channel flows. Journal of Hydraulic Research, 48(2), 213–224.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2009). Classical hydraulic jump: Basic flow features. Journal of Hydraulic Research, 47(6), 744–754.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2011a). Spatially-varied open channel flow equations with vertical inertia. Journal of Hydraulic Research, 49(5), 667–675.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2011b). Joseph Boussinesq and his theory of water flow in open channels. Journal of Hydraulic Research, 49(5), 569–577.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2011c). Turbulent near-critical open channel flow: Serre’s similarity theory. Journal of Hydraulic Research, 137(5), 497–503.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2014). 1D modelling of curvilinear free surface flow: Generalized Matthew theory. Journal of Hydraulic Research, 52(1), 14–23.

    Article  Google Scholar 

  • Castro-Orgaz, O., & Hager, W. H. (2015). Dressler’s theory for curved topography flows: Iterative derivation, transcritical flow solutions and higher-order wave-type equations. Environmental Fluid Mechanics (in press).

    Google Scholar 

  • Chanson, H. (2004). The hydraulics of open channel flows: An introduction. Oxford, UK: Butterworth-Heinemann.

    Google Scholar 

  • Chapman, T. G., & Dressler, R. F. (1984). Unsteady shallow groundwater flow over a curved impermeable boundary. Water Resources Research, 20(10), 1427–1434.

    Article  Google Scholar 

  • Chaudhry, M. H. (2008). Open-channel flow (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Chow, V. T. (1959). Open channel hydraulics. New York: McGraw-Hill.

    Google Scholar 

  • Dingemans, M. W. (1994). Water wave propagation over uneven bottoms. PhD dissertation, Technical University of Delft, Delft, the Netherlands.

    Google Scholar 

  • Fawer, C. (1937). Etude de quelques écoulements permanents à filets courbes (Study of some steady flows with curved streamlines). Thesis, Université de Lausanne. Imprimérie La Concorde, Lausanne, Switzerland (in French).

    Google Scholar 

  • Henderson, F. M. (1966). Open channel flow. New York: MacMillan.

    Google Scholar 

  • Hager, W. H., & Hutter, K. (1984). Approximate treatment of plane channel flow. Acta Mechanica, 51(1–2), 31–48.

    Article  Google Scholar 

  • Hager, W. H. (2010). Wastewater hydraulics: Theory and practice (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Jaeger, C. (1949). Technische Hydraulik (Technical hydraulics). Birkhäuser, Basel (in German).

    Google Scholar 

  • Jain, S. C. (2001). Open channel flow. New York: Wiley.

    Google Scholar 

  • Liggett, J. A. (1994). Fluid mechanics. New York: McGraw-Hill.

    Google Scholar 

  • Matthew, G. D. (1963). On the influence of curvature, surface tension and viscosity on flow over round-crested weirs. In Proceedings of the Institution of Civil Engineers, London 25, 511–524. Discussion: 1964, 28, 557–569.

    Google Scholar 

  • Montes, J. S. (1998). Hydraulics of open channel flow. Reston, VA: ASCE.

    Google Scholar 

  • Peregrine, D. H. (1966). Calculations of the development of an undular bore. Journal of Fluid Mechanics, 25, 321–330.

    Article  Google Scholar 

  • Russell, J. S. (1845, September). Report on waves. 14th Meeting of the British Association for the Advancement of Science, York (Vol. 1844, pp. 311–390).

    Google Scholar 

  • Serre, F. (1953). Contribution à l’étude des écoulements permanents et variables dans les canaux (Contribution to the study of steady and varied channel flows). La Houille Blanche, 8(6–7), 374–388; 8(12), 830–887 (in French).

    Google Scholar 

  • Sturm, T. W. (2001). Open channel hydraulics. New York: McGraw-Hill.

    Google Scholar 

  • Zhu, D. Z., & Lawrence, G. A. (1998). Non-hydrostatic effects in layered shallow water flows. Journal of Fluid Mechanics, 355, 1–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castro-Orgaz .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Castro-Orgaz, O., Hager, W.H. (2017). Introduction. In: Non-Hydrostatic Free Surface Flows. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-47971-2_1

Download citation

Publish with us

Policies and ethics