Advertisement

Robust Control of Buck-Boost Converter in Energy Harvester: A Linear Disturbance Observer Approach

  • Aniket D. Gundecha
  • V. V. Gohokar
  • Kaliprasad A. Mahapatro
  • Prasheel V. Suryawanshi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 530)

Abstract

An ingenious control of DC–DC buck-boost converter with uncertain dynamics is proposed in this paper. The proposed converter operates in buck-boost mode based on the uncertain input either from a photovoltaic cell (boost) or piezoelectric generator (buck). A linear disturbance observer is designed to alleviate the disturbances in load resistance and input source. The control is synthesized using sliding mode control. The stability of system is assured. The results are validated for a practical case of multi-energy harvesters.

Keywords

Output Voltage Input Voltage Slide Mode Control Load Resistance Disturbance Observer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Zhou, L. Huang, W. Li, and Z. Zhu.: Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey. Journal of Sensors (2014). doi:  10.1155/2014/815467
  2. 2.
    W. K. G. Seah, Z. A. Eu and H-P. Tan.: Wireless Sensor Networks Powered by Ambient Energy Harvesting (WSN-HEAP) Survey and Challenges. International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (2009). doi: 10.1109/WIRELESSVITAE.2009.5172411
  3. 3.
    A. Schlichting, R. Tiwari and E. Garcia.: Passive multi-source energy harvesting schemes. Journal of Intelligent Material Systems and Structures (2012). doi: 10.1177/1045389X12455723
  4. 4.
    S. Bandyopadhyay and A. P. Chandrakasan.: Platform Architecture for Solar, Thermal, and Vibration Energy Combining With MPPT and Single Inductor. IEEE Journal of Solid-State Circuits (2012). doi:0.1109/JSSC.2012.2197239Google Scholar
  5. 5.
    A. S. Weddell et al.: A Survey of Multi-Source Energy Harvesting Systems. Design, Automation & Test in Europe Conference & Exhibition (2013). doi: 0.7873/DATE.2013.190Google Scholar
  6. 6.
    S. Roundy.: Energy Scavenging forWireless Sensor Nodes with a Focus on Vibration to Electricity Conversion. Ph. D. Dissertation, Dept. of EECS, UC Berkeley (2003).Google Scholar
  7. 7.
    H. S. Ramirez and R. Ortega.: Passivity-based controllers for the stabilization of DC-to-DC power converters. IEEE Conference on Decision and Control (1995). doi:  10.1109/CDC.1995.479122
  8. 8.
    H. El Fadil and F. Giri.: Backstepping Based Control of PWM DC-DC Boost Power Converters. IEEE International Symposium on Industrial Electronics (2007). doi:  10.1109/ISIE.2007.4374630
  9. 9.
    C. Chang.: Robust control of DC-DC converters: the buck converter. IEEE Conference on Power Electronics (1995). doi:  10.1109/PESC.1995.474951
  10. 10.
    R. D. Keyser and C. Ionescu.: A Comparative Study of Several Control Techniques Applied to a Boost Converter. IEEE 10th Int Conf on Optimisation of Electrical and Electronic Equipment OPTIM pp. 71-78Google Scholar
  11. 11.
    P . R. Shiyas, S. Kumaravel and S. Ashok.: Fuzzy controlled dual input DC/DC converter for solar-PV/wind hybrid energy system. Electrical, Electronics and Computer Science (SCEECS) (2012). doi:  10.1109/SCEECS.2012.6184775
  12. 12.
    V. Utkin.: Sliding mode control of DC/DC converters. Journal of the Franklin Institute. vol. 350, no. 8, pp. 2146–2165 (2013). ElsevierGoogle Scholar
  13. 13.
    Y. He and F. L. Luo.: Sliding-mode control for dcdc converters with constant switching frequency. Electrical, IEE Proceedings - Control Theory and Applications (2006). doi:  10.1049/ip-cta:20050030
  14. 14.
    S. C. Tan, Y. M. Lai and C. K. Tse.: General Design Issues of Sliding-Mode Controllers in DCDC Converters . IEEE Transactions on Industrial Electronics (2008). doi:  10.1109/TIE.2007.909058
  15. 15.
    J. Han.: From PID to active disturbance rejection control. IEEE Trans. on Industrial Electronics. vol. 56, no. 3, pp. 900-906 (2009).Google Scholar
  16. 16.
    A. D. Gundecha, V. V. Gohokar, K. A. Mahapatro and P. V. Suryawanshi in Control of DC-DC Converter in Presence of Uncertain Dynamics, ed. by S. Berretti et al. Intelligent Systems Technologies and Applications, vol 384 (Advances in Intelligent Systems and Computing, 2015), pp. 315-326Google Scholar
  17. 17.
    S. E. Talole, J. P. Kolhe and S. B. Phadke.: Extended State Observer Based Control of Flexible Joint System with Experimental Validation. IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1411–1419 (2010).Google Scholar
  18. 18.
    K. A. Mahapatro, A. D. Chavan, and P. V. Suryawanshi.: Analysis of Robustness for Industrial Motion Control using Extended State Observer with Experimental Validation. IEEE Conference on Industrial Instrumentation and Control (2015). doi:  10.1109/IIC.2015.7150586
  19. 19.
    Takahashi R. H. C and Peres P. L. D.: Unknown input observers for uncertain systems: a unifying approach and enhancements. (1996) doi:  10.1109/CDC.1996.572726
  20. 20.
    L. Jiang and QH. Wu.: Nonlinear adaptive control via sliding-mode state and perturbation observer. IEE Proceedings-Control Theory and Applications (2002). doi:  10.1049/ipcta: 20020470
  21. 21.
    D. Ginoya, P. D. Shendge and S. B. Phadke.: Sliding Mode Control for Mismatched Uncertain Systems Using an Extended Disturbance Observer. IEEE Transactions on Industrial Electronics. vol. 61, no. 4, pp. 1983–1992 (2014)Google Scholar
  22. 22.
    J. Wang, S. Li, J. Fan and Qi Li.: Nonlinear disturbance observer based sliding mode control for PWM-based DC-DC boost converter systems . The 27th Chinese Control and Decision Conference (2015). doi:  10.1109/CCDC.2015.7162338
  23. 23.
    SLMD600H10–IXOLAR TM High Efficiency SolarMD.Google Scholar
  24. 24.
    Volture, Piezoelectric Energy Harvestors. MIDE (2013)Google Scholar
  25. 25.
    J. L. Flores, A. H. Mndez, C. G. Rodrguez and H. S. Ramrez.: Robust Nonlinear Adaptive Control of a Boost Converter via Algebraic Parameter Identification. IEEE Transactions on Industrial Electronics. vol. 61, no. 8, pp. 4105–4114 (2014)Google Scholar
  26. 26.
    M. Green(2012) Design Calculations for Buck-Boost Converters. Texas Instruments. http://www.ti.com/lit/an/slva535a/slva535a.pdf

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Aniket D. Gundecha
    • 1
  • V. V. Gohokar
    • 2
  • Kaliprasad A. Mahapatro
    • 3
  • Prasheel V. Suryawanshi
    • 3
  1. 1.SSGM College of Engineering, Shegaon and MIT Academy of EngineeringPuneIndia
  2. 2.Maharashtra Institute of TechnologyPuneIndia
  3. 3.MIT Academy of EngineeringPuneIndia

Personalised recommendations