Skip to main content

Robust Control of Buck-Boost Converter in Energy Harvester: A Linear Disturbance Observer Approach

  • Conference paper
  • First Online:
  • 2233 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 530))

Abstract

An ingenious control of DC–DC buck-boost converter with uncertain dynamics is proposed in this paper. The proposed converter operates in buck-boost mode based on the uncertain input either from a photovoltaic cell (boost) or piezoelectric generator (buck). A linear disturbance observer is designed to alleviate the disturbances in load resistance and input source. The control is synthesized using sliding mode control. The stability of system is assured. The results are validated for a practical case of multi-energy harvesters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Zhou, L. Huang, W. Li, and Z. Zhu.: Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey. Journal of Sensors (2014). doi: 10.1155/2014/815467

    Google Scholar 

  2. W. K. G. Seah, Z. A. Eu and H-P. Tan.: Wireless Sensor Networks Powered by Ambient Energy Harvesting (WSN-HEAP) Survey and Challenges. International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (2009). doi:10.1109/WIRELESSVITAE.2009.5172411

  3. A. Schlichting, R. Tiwari and E. Garcia.: Passive multi-source energy harvesting schemes. Journal of Intelligent Material Systems and Structures (2012). doi:10.1177/1045389X12455723

    Google Scholar 

  4. S. Bandyopadhyay and A. P. Chandrakasan.: Platform Architecture for Solar, Thermal, and Vibration Energy Combining With MPPT and Single Inductor. IEEE Journal of Solid-State Circuits (2012). doi:0.1109/JSSC.2012.2197239

    Google Scholar 

  5. A. S. Weddell et al.: A Survey of Multi-Source Energy Harvesting Systems. Design, Automation & Test in Europe Conference & Exhibition (2013). doi: 0.7873/DATE.2013.190

    Google Scholar 

  6. S. Roundy.: Energy Scavenging forWireless Sensor Nodes with a Focus on Vibration to Electricity Conversion. Ph. D. Dissertation, Dept. of EECS, UC Berkeley (2003).

    Google Scholar 

  7. H. S. Ramirez and R. Ortega.: Passivity-based controllers for the stabilization of DC-to-DC power converters. IEEE Conference on Decision and Control (1995). doi: 10.1109/CDC.1995.479122

  8. H. El Fadil and F. Giri.: Backstepping Based Control of PWM DC-DC Boost Power Converters. IEEE International Symposium on Industrial Electronics (2007). doi: 10.1109/ISIE.2007.4374630

  9. C. Chang.: Robust control of DC-DC converters: the buck converter. IEEE Conference on Power Electronics (1995). doi: 10.1109/PESC.1995.474951

  10. R. D. Keyser and C. Ionescu.: A Comparative Study of Several Control Techniques Applied to a Boost Converter. IEEE 10th Int Conf on Optimisation of Electrical and Electronic Equipment OPTIM pp. 71-78

    Google Scholar 

  11. P . R. Shiyas, S. Kumaravel and S. Ashok.: Fuzzy controlled dual input DC/DC converter for solar-PV/wind hybrid energy system. Electrical, Electronics and Computer Science (SCEECS) (2012). doi: 10.1109/SCEECS.2012.6184775

  12. V. Utkin.: Sliding mode control of DC/DC converters. Journal of the Franklin Institute. vol. 350, no. 8, pp. 2146–2165 (2013). Elsevier

    Google Scholar 

  13. Y. He and F. L. Luo.: Sliding-mode control for dcdc converters with constant switching frequency. Electrical, IEE Proceedings - Control Theory and Applications (2006). doi: 10.1049/ip-cta:20050030

    Google Scholar 

  14. S. C. Tan, Y. M. Lai and C. K. Tse.: General Design Issues of Sliding-Mode Controllers in DCDC Converters . IEEE Transactions on Industrial Electronics (2008). doi: 10.1109/TIE.2007.909058

    Google Scholar 

  15. J. Han.: From PID to active disturbance rejection control. IEEE Trans. on Industrial Electronics. vol. 56, no. 3, pp. 900-906 (2009).

    Google Scholar 

  16. A. D. Gundecha, V. V. Gohokar, K. A. Mahapatro and P. V. Suryawanshi in Control of DC-DC Converter in Presence of Uncertain Dynamics, ed. by S. Berretti et al. Intelligent Systems Technologies and Applications, vol 384 (Advances in Intelligent Systems and Computing, 2015), pp. 315-326

    Google Scholar 

  17. S. E. Talole, J. P. Kolhe and S. B. Phadke.: Extended State Observer Based Control of Flexible Joint System with Experimental Validation. IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1411–1419 (2010).

    Google Scholar 

  18. K. A. Mahapatro, A. D. Chavan, and P. V. Suryawanshi.: Analysis of Robustness for Industrial Motion Control using Extended State Observer with Experimental Validation. IEEE Conference on Industrial Instrumentation and Control (2015). doi: 10.1109/IIC.2015.7150586

  19. Takahashi R. H. C and Peres P. L. D.: Unknown input observers for uncertain systems: a unifying approach and enhancements. (1996) doi: 10.1109/CDC.1996.572726

  20. L. Jiang and QH. Wu.: Nonlinear adaptive control via sliding-mode state and perturbation observer. IEE Proceedings-Control Theory and Applications (2002). doi: 10.1049/ipcta: 20020470

  21. D. Ginoya, P. D. Shendge and S. B. Phadke.: Sliding Mode Control for Mismatched Uncertain Systems Using an Extended Disturbance Observer. IEEE Transactions on Industrial Electronics. vol. 61, no. 4, pp. 1983–1992 (2014)

    Google Scholar 

  22. J. Wang, S. Li, J. Fan and Qi Li.: Nonlinear disturbance observer based sliding mode control for PWM-based DC-DC boost converter systems . The 27th Chinese Control and Decision Conference (2015). doi: 10.1109/CCDC.2015.7162338

  23. SLMD600H10–IXOLAR TM High Efficiency SolarMD.

    Google Scholar 

  24. Volture, Piezoelectric Energy Harvestors. MIDE (2013)

    Google Scholar 

  25. J. L. Flores, A. H. Mndez, C. G. Rodrguez and H. S. Ramrez.: Robust Nonlinear Adaptive Control of a Boost Converter via Algebraic Parameter Identification. IEEE Transactions on Industrial Electronics. vol. 61, no. 8, pp. 4105–4114 (2014)

    Google Scholar 

  26. M. Green(2012) Design Calculations for Buck-Boost Converters. Texas Instruments. http://www.ti.com/lit/an/slva535a/slva535a.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniket D. Gundecha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Gundecha, A.D., Gohokar, V.V., Mahapatro, K.A., Suryawanshi, P.V. (2016). Robust Control of Buck-Boost Converter in Energy Harvester: A Linear Disturbance Observer Approach. In: Corchado Rodriguez, J., Mitra, S., Thampi, S., El-Alfy, ES. (eds) Intelligent Systems Technologies and Applications 2016. ISTA 2016. Advances in Intelligent Systems and Computing, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-319-47952-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47952-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47951-4

  • Online ISBN: 978-3-319-47952-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics