Skip to main content

Individual Differences in Temporal Perception and Their Implications for Everyday Listening

  • Chapter
  • First Online:
The Frequency-Following Response

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 61))

Abstract

Growing evidence shows that individual differences among listeners with normal hearing thresholds reflect underlying differences in how well the auditory system encodes temporal features of sound. In the laboratory, these differences manifest in a range of psychophysical tasks. In everyday life, however, the situations that reveal these differences are often social settings where listeners are trying to understand one talker in the presence of other competing sound sources (the “cocktail party” setting). Physiologically, the brainstem’s envelope-following response (a specific form of the frequency-following response) correlates with individual differences in behavior. Motivated by both animal and human studies, this chapter reviews the evidence that behavioral and physiological differences across individual listeners with normal hearing thresholds reflect differences in the number of auditory nerve fibers responding to sound despite normal cochlear mechanical function (cochlear neuropathy). The chapter also points out some of the measurement issues that need to be considered when designing experiments trying to probe these kinds of individual differences in coding of clearly audible, supra-threshold auditory information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiken, S. J., & Picton, T. W. (2008). Envelope and spectral frequency-following responses to vowel sounds. Hearing Research, 245(1–2), 35–47. Doi:10.1016/j.heares.2008.08.004

    Article  PubMed  Google Scholar 

  • Ananthanarayan, A. K., & Durrant, J. D. (1992). The frequency-following response and the onset response: Evaluation of frequency specificity using a forward-masking paradigm. Ear and Hearing, 13(4), 228–232.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2012). Aging affects neural precision of speech encoding. The Journal of Neuroscience, 32(41), 14156–14164. Doi:10.1523/JNEUROSCI.2176-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, S., White-Schwoch, T., Parbery-Clark, A., & Kraus, N. (2013). Reversal of age-related neural timing delays with training. Proceedings of the National Academy of Sciences of the USA, 110(11), 4357–4362. Doi:10.1073/pnas.1213555110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballachanda, B. B., & Moushegian, G. (2000). Frequency-following response: Effects of interaural time and intensity differences. Journal of the American Academy of Audiology, 11(1), 1–11.

    CAS  PubMed  Google Scholar 

  • Bharadwaj, H. M., Masud, S., Mehraei, G., Verhulst, S., & Shinn-Cunningham, B. G. (2015). Individual differences reveal correlates of hidden hearing deficits. The Journal of Neuroscience, 35, 2161–2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharadwaj, H. M., & Shinn-Cunningham, B. G. (2014). Rapid acquisition of auditory subcortical steady state responses using multichannel recordings. Clinical Neurophysiology, 125(9), 1878–1888. Doi:10.1016/j.clinph.2014.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharadwaj, H. M., Verhulst, S., Shaheen, L., Liberman, M. C., & Shinn-Cunningham, B. G. (2014). Cochlear neuropathy and the coding of supra-threshold sound. Frontiers in Systems Neuroscience. Doi:10.3389/fnsys.2014.00026

    PubMed  PubMed Central  Google Scholar 

  • Blauert, J. (1997). Spatial hearing (2nd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  • Boashash, B. (1992). Estimating and interpreting the instantaneous frequency of a signal I. Fundamentals. Proceedings of the IEEE, 80(4), 520–538.

    Article  Google Scholar 

  • Bohne, B. A., & Harding, G. W. (2000). Degeneration in the cochlea after noise damage: Primary versus secondary events. American Journal of Otology, 21(4), 505–509.

    CAS  PubMed  Google Scholar 

  • Bourien, J., Tang, Y., Batrel, C., Huet, A., et al. (2014). Contribution of auditory nerve fibers to compound action potential of the auditory nerve. Journal of Neurophysiology, 112(5), 1025–1039. Doi:10.1152/jn.00738.2013

    Article  CAS  PubMed  Google Scholar 

  • Brantberg, K., Fransson, P. A., Hansson, H., & Rosenhall, U. (1999). Measures of the binaural interaction component in human auditory brainstem response using objective detection criteria. Scandinavian Audiology, 28(1), 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Carcagno, S., & Plack, C. J. (2011). Subcortical plasticity following perceptual learning in a pitch discrimination task. Journal of the Association for Research in Otolaryngology, 12(1), 89–100. Doi:10.1007/s10162-010-0236-1

    Article  PubMed  Google Scholar 

  • Carlyon, R. P. (2004). How the brain separates sounds. Trends in Cognitive Sciences, 8(10), 465–471.

    Article  PubMed  Google Scholar 

  • Chambers, A. R., Resnik, J., Yuan, Y., Whitton, J. P., et al. (2016). Central gain restores auditory processing following near-complete cochlear denervation. Neuron, 89(4), 867–879. Doi:10.1016/j.neuron.2015.12.041

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran, B., Kraus, N., & Wong, P. C. (2012). Human inferior colliculus activity relates to individual differences in spoken language learning. Journal of Neurophysiology, 107(5), 1325–1336. Doi:10.1152/jn.00923.2011

    Article  PubMed  Google Scholar 

  • Chandrasekaran, B., Krishnan, A., & Gandour, J. T. (2007). Experience-dependent neural plasticity is sensitive to shape of pitch contours. NeuroReport, 18(18), 1963–1967. Doi:10.1097/WNR.0b013e3282f213c5

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran, B., Skoe, E., & Kraus, N. (2014). An integrative model of subcortical auditory plasticity. Brain Topography, 27(4), 539–552. Doi:10.1007/s10548-013-0323-9

    Article  PubMed  Google Scholar 

  • Christiansen, S. K., & Oxenham, A. J. (2014). Assessing the effects of temporal coherence on auditory stream formation through comodulation masking release. The Journal of the Acoustical Society of America, 135(6), 3520–3529. Doi:10.1121/1.4872300

    Article  PubMed  Google Scholar 

  • Clark, J. L., Moushegian, G., & Rupert, A. L. (1997). Interaural time effects on the frequency-following response. Journal of the American Academy of Audiology, 8(5), 308–313.

    CAS  PubMed  Google Scholar 

  • Cohen, L. T., Rickards, F. W., & Clark, G. M. (1991). A comparison of steady-state evoked potentials to modulated tones in awake and sleeping humans. Journal of the Acoustical Society of America, 90(5), 2467–2479.

    Article  CAS  PubMed  Google Scholar 

  • Dobie, R. A., & Wilson, M. J. (1993). Objective response detection in the frequency domain. Electroencephalography and Clinical Neurophysiology, 88(6), 516–524.

    Article  CAS  PubMed  Google Scholar 

  • Dolphin, W. F., & Mountain, D. C. (1992). The envelope-following response: Scalp potentials elicited in the Mongolian gerbil using sinusoidally AM acoustic signals. Hearing Research, 58(1), 70–78.

    Article  CAS  PubMed  Google Scholar 

  • Escabi, M. A., & Read, H. L. (2003). Representation of spectrotemporal sound information in the ascending auditory pathway. Biological Cybernetics, 89(5), 350–362.

    Article  PubMed  Google Scholar 

  • Fitzgibbons, P. J., & Gordon-Salant, S. (2010). Age-related differences in discrimination of temporal intervals in accented tone sequences. Hearing Research, 264(1–2), 41–47. Doi:10.1016/j.heares.2009.11.008

    Article  PubMed  Google Scholar 

  • Fullgrabe, C., Moore, B. C., & Stone, M. A. (2014). Age-group differences in speech identification despite matched audiometrically normal hearing: Contributions from auditory temporal processing and cognition. Frontiers in Aging Neuroscience, 6, 347. Doi:10.3389/fnagi.2014.00347

    PubMed  Google Scholar 

  • Furman, A. C., Kujawa, S. G., & Liberman, M. C. (2013). Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. Journal of Neurophysiology. Doi:10.1152/jn.00164.2013

    Google Scholar 

  • Galambos, R., Makeig, S., & Talmachoff, P. J. (1981). A 40-Hz auditory potential recorded from the human scalp. Proceedings of the National Academy of Sciences of the USA, 78(4), 2643–2647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galbraith, G. C. (1994). Two-channel brainstem frequency-following responses to pure tone and missing fundamental stimuli. Electroencephalography and Clinical Neurophysiology, 92(4), 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Galbraith, G. C., Olfman, D. M., & Huffman, T. M. (2003). Selective attention affects human brainstem frequency-following response. NeuroReport, 14(5), 735–738. Doi:10.1097/01.wnr.0000064983.96259.49

    Article  PubMed  Google Scholar 

  • Gardi, J., Merzenich, M., & McKean, C. (1979). Origins of the scalp recorded frequency-following response in the cat. Audiology, 18(5), 358–381.

    CAS  PubMed  Google Scholar 

  • Gerken, G. M., Moushegian, G., Stillman, R. D., & Rupert, A. L. (1975). Human frequency-following responses to monaural and binaural stimuli. Electroencephalography and Clinical Neurophysiology, 38(4), 379–386.

    Article  CAS  PubMed  Google Scholar 

  • Goblick, T. J., Jr., & Pfeiffer, R. R. (1969). Time-domain measurements of cochlear nonlinearities using combination click stimuli. The Journal of the Acoustical Society of America, 46(4), 924–938.

    Article  PubMed  Google Scholar 

  • Gockel, H. E., Krugliak, A., Plack, C. J., & Carlyon, R. P. (2015). Specificity of the human frequency-following response for carrier and modulation frequency assessed using adaptation. Journal of the Association for Research in Otolaryngology, 16(6), 747–762. Doi:10.1007/s10162-015-0533-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Grose, J. H., & Mamo, S. K. (2010). Processing of temporal fine structure as a function of age. Ear and Hearing, 31, 755–760. Doi:10.1097/AUD.0b013e3181e627e7

    Article  PubMed  PubMed Central  Google Scholar 

  • Grose, J. H., & Mamo, S. K. (2012). Frequency modulation detection as a measure of temporal processing: Age-related monaural and binaural effects. Hearing Research, 294(1–2), 49–54. Doi:10.1016/j.heares.2012.09.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Grose, J. H., Mamo, S. K., Buss, E., & Hall, J. W., III. (2015). Temporal processing deficits in middle age. American Journal of Audiology, 24(2), 91–93. Doi:10.1044/2015_AJA-14-0053

    Article  PubMed  PubMed Central  Google Scholar 

  • Grose, J. H., Mamo, S. K., & Hall, J. W., III. (2009). Age effects in temporal envelope processing: Speech unmasking and auditory steady state responses. Ear and Hearing, 30(5), 568–575. Doi:10.1097/AUD.0b013e3181ac128f

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall, J. (2007). New handbook of auditory evoked responses. Boston: Pearson.

    Google Scholar 

  • Hamalainen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencepahlography: Theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65(2), 413–497. Doi:10.1103/RevModPhys.65.413

    Article  CAS  Google Scholar 

  • He, N. J., Mills, J. H., Ahlstrom, J. B., & Dubno, J. R. (2008). Age-related differences in the temporal modulation transfer function with pure-tone carriers. Journal of the Acoustical Society of America, 124(6), 3841–3849. Doi:10.1121/1.2998779

    Article  PubMed  PubMed Central  Google Scholar 

  • Helfer, K. S. (2015). Competing speech perception in middle age. American Journal of Audiology, 24(2), 80–83. Doi:10.1044/2015_AJA-14-0056

    Article  PubMed  PubMed Central  Google Scholar 

  • Helfer, K. S., & Vargo, M. (2009). Speech recognition and temporal processing in middle-aged women. Journal of the American Academy of Audiology, 20(4), 264–271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herdman, A. T., Picton, T. W., & Stapells, D. R. (2002). Place specificity of multiple auditory steady-state responses. The Journal of the Acoustical Society of America, 112(4), 1569–1582.

    Article  PubMed  Google Scholar 

  • Hickox, A. E., & Liberman, M. C. (2014). Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? Journal of Neurophysiology, 111(3), 552–564. Doi:10.1152/jn.00184.2013

    Article  PubMed  Google Scholar 

  • Hind, S. E., Haines-Bazrafshan, R., Benton, C. L., Brassington, W., et al. (2011). Prevalence of clinical referrals having hearing thresholds within normal limits. International Journal of Audiology, 50(10), 708–716. Doi:10.3109/14992027.2011.582049

    Article  PubMed  Google Scholar 

  • Hornickel, J., Chandrasekaran, B., Zecker, S., & Kraus, N. (2011). Auditory brainstem measures predict reading and speech-in-noise perception in school-aged children. Behavioral and Brain Research, 216(2), 597–605. Doi:10.1016/j.bbr.2010.08.051

    Article  Google Scholar 

  • Jin, S. H., Liu, C., & Sladen, D. P. (2014). The effects of aging on speech perception in noise: Comparison between normal-hearing and cochlear-implant listeners. Journal of the American Academy of Audiology, 25(7), 656–665. Doi:10.3766/jaaa.25.7.4

    Article  PubMed  Google Scholar 

  • John, M. S., Lins, O. G., Boucher, B. L., & Picton, T. W. (1998). Multiple auditory steady-state responses (MASTER): Stimulus and recording parameters. Audiology, 37(2), 59–82.

    Article  CAS  PubMed  Google Scholar 

  • Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiology Review, 84(2), 541–577. Doi:10.1152/physrev.00029.2003

    Article  CAS  Google Scholar 

  • Joris, P. X., Smith, P. H., & Yin, T. C. (1998). Coincidence detection in the auditory system: 50 years after Jeffress. Neuron, 21(6), 1235–1238. S0896-6273(00)80643-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Joris, P. X., & Yin, T. C. (1992). Responses to amplitude-modulated tones in the auditory nerve of the cat. The Journal of the Acoustical Society of America, 91(1), 215–232.

    Article  CAS  PubMed  Google Scholar 

  • Kiren, T., Aoyagi, M., Furuse, H., & Koike, Y. (1994). An experimental study on the generator of amplitude-modulation following response. Acta Otolaryngolica Supplement, 511, 28–33.

    CAS  Google Scholar 

  • Kraus, N., & White-Schwoch, T. (2015). Unraveling the biology of auditory learning: A cognitive-sensorimotor-reward framework. Trends in Cognitive Sciences, 19(11), 642–654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2006). Acceleration of age-related hearing loss by early noise exposure: Evidence of a misspent youth. The Journal of Neuroscience, 26(7), 2115–2123. Doi:10.1523/JNEUROSCI.4985-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. The Journal of Neuroscience, 29(45), 14077–14085. Doi:10.1523/JNEUROSCI.2845-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2015). Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hearing Research, 330(Pt B), 191–199. Doi:10.1016/j.heares.2015.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, G., Amen, F., & Roy, D. (2007). Normal hearing tests: Is a further appointment really necessary? Journal of the Royal Society of Medicine, 100(2), 66. Doi:10.1258/jrsm.100.2.66-a

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuwada, S., Anderson, J. S., Batra, R., Fitzpatrick, D. C., et al. (2002). Sources of the scalp-recorded amplitude-modulation following response. Journal of the American Academy of Audiology, 13(4), 188–204.

    PubMed  Google Scholar 

  • Kuwada, S., & Yin, T. C. T. (1987). Physiological studies of directional hearing. In W. A. Yost & G. Gourevitch (Eds.), Directional hearing (pp. 146–176). New York: Springer.

    Chapter  Google Scholar 

  • Lachaux, J. P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8(4), 194–208. Doi:10.1002/(SICI)1097-0193(1999)8:4<194:AID-HBM4>3.0.CO;2-C [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lee, A. K. C., Larson, E., & Maddox, R. K. (2012). Mapping cortical dynamics using simultaneous MEG/EEG and anatomically-constrained minimum-norm estimates: An auditory attention example. Journal of Visual Experiments, 68, e4262. Doi:10.3791/4262

    Google Scholar 

  • Lehmann, A., & Schonwiesner, M. (2014). Selective attention modulates human auditory brainstem responses: Relative contributions of frequency and spatial cues. PLoS ONE, 9(1), e85442. Doi:10.1371/journal.pone.0085442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liberman, M. C. (1980). Morphological differences among radial afferent fibers in the cat cochlea: An electron-microscopic study of serial sections. Hearing Research, 3(1), 45–63.

    Article  CAS  PubMed  Google Scholar 

  • Liberman, M. C. (2015). Hidden hearing loss. Scientific American, 313(2), 48–53.

    Article  PubMed  Google Scholar 

  • Liberman, M. C., Chesney, C., & Kujawa, S. (1997). Effects of selective inner hair cell loss on DPOAE and CAP in carboplatin-treated chinchillas. Auditory Neuroscience, 3(3), 255–268.

    CAS  Google Scholar 

  • Lin, H. W., Furman, A. C., Kujawa, S. G., & Liberman, M. C. (2011). Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. Journal of the Association for Research in Otolaryngology, 12(5), 605–616. Doi:10.1007/s10162-011-0277-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Lins, O. G., Picton, T. W., Boucher, B. L., Durieux-Smith, A., et al. (1996). Frequency-specific audiometry using steady-state responses. Ear and Hearing, 17(2), 81–96.

    Article  CAS  PubMed  Google Scholar 

  • Lobarinas, E., Salvi, R., & Ding, D. (2013). Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hearing Research, 302, 113–120. Doi:10.1016/j.heares.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  • Luo, F., Wang, Q., Kashani, A., & Yan, J. (2008). Corticofugal modulation of initial sound processing in the brain. The Journal of Neuroscience, 28(45), 11615–11621. Doi:10.1523/JNEUROSCI.3972-08.2008

    Article  CAS  PubMed  Google Scholar 

  • Maddox, R. K., & Shinn-Cunningham, B. G. (2012). Influence of task-relevant and task-irrelevant feature continuity on selective auditory attention. Journal of the Association for Research in Otolaryngology, 13(1), 119–129. Doi:10.1007/s10162-011-0299-7

    Article  PubMed  Google Scholar 

  • Makary, C. A., Shin, J., Kujawa, S. G., Liberman, M. C., & Merchant, S. N. (2011). Age-related primary cochlear neuronal degeneration in human temporal bones. Journal of the Association for Research in Otolaryngology, 12(6), 711–717. Doi:10.1007/s10162-011-0283-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsh, J. T., Brown, W. S., & Smith, J. C. (1975). Far-field recorded frequency-following responses: Correlates of low pitch auditory perception in humans. Electroencephalography and Clinical Neurophysiology, 38(2), 113–119.

    Article  CAS  PubMed  Google Scholar 

  • Mehraei, G., Hickox, A. E., Bharadwaj, H. M., Goldberg, H., et al. (2016). Auditory brainstem response latency in noise as a marker of cochlear synaptopathy. The Journal of Neuroscience, 36(13), 3755–3764. Doi:10.1523/JNEUROSCI.4460-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta, A., Prabhakar, M., Kumar, P., Deshmukh, R., & Sharma, P. L. (2013). Excitotoxicity: Bridge to various triggers in neurodegenerative disorders. European Journal of Pharmacology, 698(1–3), 6–18. Doi:10.1016/j.ejphar.2012.10.032

    Article  CAS  PubMed  Google Scholar 

  • Milstein, J. N., & Koch, C. (2008). Dynamic moment analysis of the extracellular electric field of a biologically realistic spiking neuron. Neural Computation, 20(8), 2070–2084. Doi:10.1162/neco.2008.06-07-537

    Article  PubMed  Google Scholar 

  • Moore, B. C. J. (2003). An introduction to the psychology of hearing (5th ed.). San Diego, CA: Academic Press.

    Google Scholar 

  • Oatman, L. C. (1976). Effects of visual attention on the intensity of auditory evoked potentials. Experimental Neurology, 51(1), 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Oatman, L. C., & Anderson, B. W. (1980). Suppression of the auditory frequency-following response during visual attention. Electroencephalography and Clinical Neurophysiology, 49(3–4), 314–322.

    Article  CAS  PubMed  Google Scholar 

  • Oertel, D., Bal, R., Gardner, S. M., Smith, P. H., & Joris, P. X. (2000). Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. Proceedings of the National Academy of Sciences of the USA, 97(22), 11773–11779. Doi:10.1073/pnas.97.22.11773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada, Y. C., Wu, J., & Kyuhou, S. (1997). Genesis of MEG signals in a mammalian CNS structure. Electroencephalography and Clinical Neurophysiology, 103(4), 474–485.

    Article  CAS  PubMed  Google Scholar 

  • Parbery-Clark, A., Strait, D. L., Hittner, E., & Kraus, N. (2013). Musical training enhances neural processing of binaural sounds. The Journal of Neuroscience, 33(42), 16741–16747. Doi:10.1523/JNEUROSCI.5700-12.2013

    Article  CAS  PubMed  Google Scholar 

  • Parbery-Clark, A., Strait, D. L., & Kraus, N. (2011). Context-dependent encoding in the auditory brainstem subserves enhanced speech-in-noise perception in musicians. Neuropsychologia, 49(12), 3338–3345. Doi:10.1016/j.neuropsychologia.2011.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauli-Magnus, D., Hoch, G., Strenzke, N., Anderson, S., et al. (2007). Detection and differentiation of sensorineural hearing loss in mice using auditory steady-state responses and transient auditory brainstem responses. Neuroscience, 149(3), 673–684. Doi:10.1016/j.neuroscience.2007.08.010

    Article  CAS  PubMed  Google Scholar 

  • Plack, C. J., Barker, D., & Prendergast, G. (2014). Perceptual consequences of “hidden” hearing loss. Trends in Hearing, 18. Doi:10.1177/2331216514550621

  • Pujol, R., Puel, J. L., Gervais d’Aldin, C., & Eybalin, M. (1993). Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngolica, 113(3), 330–334.

    Article  CAS  Google Scholar 

  • Purcell, D. W., John, S. M., Schneider, B. A., & Picton, T. W. (2004). Human temporal auditory acuity as assessed by envelope-following responses. Journal of the Acoustical Society of America, 116(6), 3581–3593.

    Article  PubMed  Google Scholar 

  • Quaranta, A., Portalatini, P., & Henderson, D. (1998). Temporary and permanent threshold shift: An overview. Scandinavian Audiology Supplement, 48, 75–86.

    CAS  PubMed  Google Scholar 

  • Relkin, E. M., & Doucet, J. R. (1991). Recovery from prior stimulation. I: Relationship to spontaneous firing rates of primary auditory neurons. Hearing Research, 55(2), 215–222.

    Article  CAS  PubMed  Google Scholar 

  • Rinne, T., Balk, M. H., Koistinen, S., Autti, T., et al. (2008). Auditory selective attention modulates activation of human inferior colliculus. Journal of Neurophysiology, 100(6), 3323–3327. Doi:10.1152/jn.90607.2008

    Article  PubMed  Google Scholar 

  • Rosen, S., Cohen, M., & Vanniasegaram, I. (2010). Auditory and cognitive abilities of children suspected of auditory processing disorder (APD). International Journal of Pediatric Otorhinolaryngology, 74(6), 594–600. Doi:10.1016/j.ijporl.2010.02.021

    Article  PubMed  Google Scholar 

  • Ruggles, D., Bharadwaj, H., & Shinn-Cunningham, B. G. (2011). Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proceedings of the National Academy of Sciences of the USA, 108(37), 15516–15521. Doi:10.1073/pnas.1108912108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggles, D., Bharadwaj, H., & Shinn-Cunningham, B. G. (2012). Why middle-aged listeners have trouble hearing in everyday settings. Current Biology, 22(15), 1417–1422. Doi:10.1016/j.cub.2012.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggles, D., & Shinn-Cunningham, B. (2011). Spatial selective auditory attention in the presence of reverberant energy: Individual differences in normal-hearing listeners. Journal of the Association for Research in Otolaryngology, 12(3), 395–405. Doi:10.1007/s10162-010-0254-z

    Article  PubMed  Google Scholar 

  • Russo, N., Nicol, T., Musacchia, G., & Kraus, N. (2004). Brainstem responses to speech syllables. Clinical Neurophysiology, 115(9), 2021–2030. Doi:10.1016/j.clinph.2004.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaette, R., & McAlpine, D. (2011). Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model. The Journal of Neuroscience, 31(38), 13452–13457. Doi:10.1523/JNEUROSCI.2156-11.2011

    Article  CAS  PubMed  Google Scholar 

  • Schmiedt, R. A., Mills, J. H., & Boettcher, F. A. (1996). Age-related loss of activity of auditory-nerve fibers. Journal of Neurophysiology, 76(4), 2799–2803.

    CAS  PubMed  Google Scholar 

  • Schoof, T. (2014). The effects of ageing on the perception of speech in noise. Dissertation, University College London, London, UK.

    Google Scholar 

  • Sergeyenko, Y., Lall, K., Liberman, M. C., & Kujawa, S. G. (2013). Age-related cochlear synaptopathy: An early-onset contributor to auditory functional decline. Journal of Neuroscience, 33(34), 13686–13694. Doi:10.1523/JNEUROSCI.1783-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaheen, L. A., Valero, M. D., & Liberman, M. C. (2015). Towards a diagnosis of cochlear neuropathy with envelope-following responses. Journal of the Association for Research in Otolaryngology, 16(6), 727–745. Doi:10.1007/s10162-015-0539-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34(3), 114–123. Doi:10.1016/j.tins.2010.11.002. S0166-2236(10)00167-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shinn-Cunningham, B. G. (2008). Object-based auditory and visual attention. Trends in Cognitive Sciences, 12(5), 182–186. Doi:10.1016/j.tics.2008.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinn-Cunningham, B. G., & Best, V. (2008). Selective attention in normal and impaired hearing. Trends in Amplification, 12(4), 283–299. Doi:10.1177/1084713808325306

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinn-Cunningham, B., Ruggles, D. R., & Bharadwaj, H. (2013). How early aging and environment interact in everyday listening: From brainstem to behavior through modeling. Basic Aspects of Hearing: Physiology and Perception, 787, 501–510. Doi:10.1007/978-1-4614-1590-9_55

    Article  Google Scholar 

  • Skoe, E., Chandrasekaran, B., Spitzer, E. R., Wong, P. C., & Kraus, N. (2014). Human brainstem plasticity: The interaction of stimulus probability and auditory learning. Neurobiological Learning and Memory, 109, 82–93. Doi:10.1016/j.nlm.2013.11.011

    Article  Google Scholar 

  • Skoe, E., & Kraus, N. (2010). Auditory brainstem response to complex sounds: A tutorial. Ear and Hearing, 31(3), 302–324. Doi:10.1097/AUD.0b013e3181cdb272

    Article  PubMed  PubMed Central  Google Scholar 

  • Slater, J., Skoe, E., Strait, D. L., O’Connell, S., et al. (2015). Music training improves speech-in-noise perception: Longitudinal evidence from a community-based music program. Behavioral and Brain Research, 291, 244–252. Doi:10.1016/j.bbr.2015.05.026

    Article  Google Scholar 

  • Slee, S. J., & David, S. V. (2015). Rapid task-related plasticity of spectrotemporal receptive fields in the auditory midbrain. The Journal of Neuroscience, 35(38), 13090–13102. Doi:10.1523/JNEUROSCI.1671-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies in auditory perception. Nature, 416(6876), 87–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, J. C., Marsh, J. T., & Brown, W. S. (1975). Far-field recorded frequency-following responses: Evidence for the locus of brainstem sources. Electroencephalography and Clinical Neurophysiology, 39(5), 465–472.

    Article  CAS  PubMed  Google Scholar 

  • Snell, K., & Frisina, D. R. (2000). Relationship among age-related differences in gap detection and word recognition. The Journal of the Acoustical Society of America, 107(3), 1615–1626.

    Article  CAS  PubMed  Google Scholar 

  • Snell, K. B., Mapes, F. M., Hickman, E. D., & Frisina, D. R. (2002). Word recognition in competing babble and the effects of age, temporal processing, and absolute sensitivity. The Journal of the Acoustical Society of America, 112(2), 720–727.

    Article  PubMed  Google Scholar 

  • Sohmer, H., Pratt, H., & Kinarti, R. (1977). Sources of frequency-following responses (FFR) in man. Electroencephalography and Clinical Neurophysiology, 42(5), 656–664.

    Article  CAS  PubMed  Google Scholar 

  • Stamper, G. C., & Johnson, T. A. (2015). Auditory function in normal-hearing, noise-exposed human ears. Ear and Hearing, 36(2), 172–184. Doi:10.1097/AUD.0000000000000107

    Article  PubMed  PubMed Central  Google Scholar 

  • Stapells, D. R., Linden, D., Suffield, J. B., Hamel, G., & Picton, T. W. (1984). Human auditory steady state potentials. Ear and Hearing, 5(2), 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Starr, A., Picton, T. W., Sininger, Y., Hood, L. J., & Berlin, C. I. (1996). Auditory neuropathy. Brain, 119(Pt 3), 741–753.

    Article  PubMed  Google Scholar 

  • Stillman, R. D., Crow, G., & Moushegian, G. (1978). Components of the frequency-following potential in man. Electroencephalography and Clinical Neurophysiology, 44(4), 438–446.

    Article  CAS  PubMed  Google Scholar 

  • Strait, D. L., Hornickel, J., & Kraus, N. (2011). Subcortical processing of speech regularities underlies reading and music aptitude in children. Behavioral Brain Function, 7(1), 44. Doi:10.1186/17449081-7-44

    Article  Google Scholar 

  • Strait, D. L., & Kraus, N. (2014). Biological impact of auditory expertise across the life span: Musicians as a model of auditory learning. Hearing Research, 308, 109–121. Doi:10.1016/j.heares.2013.08.004

    Article  PubMed  Google Scholar 

  • Strelcyk, O., & Dau, T. (2009). Relations between frequency selectivity, temporal fine-structure processing, and speech reception in impaired hearing. Journal of the Acoustical Society of America, 125(5), 3328–3345. Doi:10.1121/1.3097469

    Article  PubMed  Google Scholar 

  • Suga, N., & Ma, X. (2003). Multiparametric corticofugal modulation and plasticity in the auditory system. Nature Review Neuroscience, 4(10), 783–794. Doi:10.1038/nrn1222

    Article  CAS  Google Scholar 

  • Szydlowska, K., & Tymianski, M. (2010). Calcium, ischemia and excitotoxicity. Cell Calcium, 47(2), 122–129. Doi:10.1016/j.ceca.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  • Valero, M. D., Hancock, K. E., & Liberman, M. C. (2016). The middle ear muscle reflex in the diagnosis of cochlear neuropathy. Hearing Research, 332, 29–38. Doi:10.1016/j.heares.2015.11.005

    Article  PubMed  Google Scholar 

  • Varghese, L., Bharadwaj, H. M., & Shinn-Cunningham, B. G. (2015). Evidence against attentional state modulating scalp-recorded auditory brainstem steady-state responses. Brain Research, 1626, 146–164. Doi:10.1016/j.brainres.2015.06.038

    Article  CAS  PubMed  Google Scholar 

  • Verhulst, S., Bharadwaj, H. M., Mehraei, G., Shera, C. A., & Shinn-Cunningham, B. G. (2015). Functional modeling of the human auditory brainstem response to broadband stimulation. The Journal of the Acoustical Society of America, 138(3), 1637–1659. Doi:10.1121/1.4928305

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitton, J. P., Hancock, K. E., & Polley, D. B. (2014). Immersive audiomotor game play enhances neural and perceptual salience of weak signals in noise. Proceedings of the National Academy of Sciences of the USA, 111(25), E2606–E2615. Doi:10.1073/pnas.1322184111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wible, B., Nicol, T., & Kraus, N. (2005). Correlation between brainstem and cortical auditory processes in normal and language-impaired children. Brain, 128(Pt 2), 417–423. Doi:10.1093/brain/awh367

    PubMed  Google Scholar 

  • Wilson, J. R., & Krishnan, A. (2005). Human frequency-following responses to binaural masking level difference stimuli. Journal of the American Academy of Audiology, 16(3), 184–195.

    Article  PubMed  Google Scholar 

  • Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–422. Doi:10.1038/nn1872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, W. Y., & Stapells, D. R. (2004). Brainstem and cortical mechanisms underlying the binaural masking level difference in humans: An auditory steady-state response study. Ear and Hearing, 25(1), 57–67. Doi:10.1097/01.AUD.0000111257.11898.64

    Article  PubMed  Google Scholar 

  • Wrege, K. S., & Starr, A. (1981). Binaural interaction in human auditory brainstem evoked potentials. Archives of Neurology, 38(9), 572–580.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, F. G., Nie, K., Stickney, G. S., Kong, Y. Y., et al. (2005). Speech recognition with amplitude and frequency modulations. Proceedings of the National Academy of Sciences of the USA, 102(7), 2293–2298. Doi:10.1073/pnas.0406460102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., & Boettcher, F. A. (2008). Effects of interaural time and level differences on the binaural interaction component of the 80 Hz auditory steady-state response. Journal of the American Academy of Audiology, 19(1), 82–94.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, L., Bharadwaj, H., Xia, J., & Shinn-Cunningham, B. (2013). A comparison of spectral magnitude and phase-locking value analyses of the frequency-following response to complex tones. The Journal of the Acoustical Society of America, 134(1), 384–395. Doi:10.1121/1.4807498

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Compliance with Ethics

Barbara Shinn-Cunningham, Leonard Varghese, Le Wang, and Hari Bharadwaj declared that they had no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Shinn-Cunningham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shinn-Cunningham, B., Varghese, L., Wang, L., Bharadwaj, H. (2017). Individual Differences in Temporal Perception and Their Implications for Everyday Listening. In: Kraus, N., Anderson, S., White-Schwoch, T., Fay, R., Popper, A. (eds) The Frequency-Following Response. Springer Handbook of Auditory Research, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-47944-6_7

Download citation

Publish with us

Policies and ethics