Skip to main content

Shaping Brainstem Representation of Pitch-Relevant Information by Language Experience

  • Chapter
  • First Online:
The Frequency-Following Response

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 61))

Abstract

Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. We present compelling evidence supporting the notion that long-term language experience enhances the neural representation of behaviorally relevant attributes of pitch in the brainstem. Pitch relevant neural activity in the brainstem is crucially dependent on specific dimensions or features of pitch contours. By focusing on specific properties of the auditory signal, irrespective of a speech or nonspeech context, it is argued that the neural representation of acoustic–phonetic features relevant to speech perception is already emerging in the brainstem and, importantly, can be shaped by experience. Such effects of language experience on sensory processing are compatible with a more integrated approach to language and the brain. Long-term language experience appears to shape an adaptive, integrated, distributed pitch-processing network. A theoretical framework for a neural network is proposed involving coordination between local, feedforward and feedback components that can account for experience-induced enhancement of pitch representations at multiple locations of the distributed pitch processing network. Feedback, feedforward connections provide selective gating of inputs to both cortical and subcortical structures to enhance neural representation of behaviorally relevant attributes of the stimulus and instantiate local mechanisms that exhibit enhanced sensitivity to behaviorally relevant pitch attributes. The focus on pitch processing in tonal languages notwithstanding, the findings presented here should be contextualized within the broader framework of language experience shaping subcortical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams, D. A., Nicol, T., Zecker, S. G., & Kraus, N. (2006). Auditory brainstem timing predicts cerebral asymmetry for speech. The Journal of Neuroscience, 26(43), 11131–11137. Doi:10.1523/JNEUROSCI.2744-06.2006. (26/43/11131 [pii]).

    Article  CAS  PubMed  Google Scholar 

  • Abramson, A. S. (1962). The vowels and tones of standard Thai: Acoustical measurements and experiments. Research Center in Anthropology, Folklore, and Linguistics, Pub. 20. Bloomington, IN: Indiana University.

    Google Scholar 

  • Abramson, A. S. (1978). Static and dynamic acoustic cues in distinctive tones. Language and Speech, 21, 319–325.

    CAS  PubMed  Google Scholar 

  • Akhoun, I., Gallégo, S., Moulin, A., Ménard, M., et al. (2008). The temporal relationship between speech auditory brainstem responses and the acoustic pattern of the phoneme /ba/ in normal-hearing adults. Clinical Neurophysiology, 119, 922–933.

    Article  CAS  PubMed  Google Scholar 

  • Balaguer-Ballester, E., Clark, N. R., Coath, M., Krumbholz, K., & Denham, S. L. (2009). Understanding pitch perception as a hierarchical process with top-down modulation. PLoS Computational Biology, 5(3), e1000301. Doi:10.1371/journal.pcbi.1000301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banai, K., Abrams, D., & Kraus, N. (2007). Sensory-based learning disability: Insights from brainstem processing of speech sounds. International Journal of Audiology, 46(9), 524–532. Doi:10.1080/14992020701383035. (781872134 [pii]).

    Article  PubMed  Google Scholar 

  • Besson, M., Chobert, J., & Marie, C. (2011). Language and music in the musician brain. Language and Linguistics Compass, 5(9), 617–634. Doi:10.1111/j.1749-818x.2011.00302

    Article  Google Scholar 

  • Bidelman, G. M., Gandour, J. T., & Krishnan, A. (2011a). Musicians demonstrate experience-dependent brainstem enhancement of musical scale features within continuously gliding pitch. Neuroscience Letters, 503(3), 203–207. Doi:10.1016/j.neulet.2011.08.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidelman, G. M., Gandour, J. T., & Krishnan, A. (2011b). Musicians and tone-language speakers share enhanced brainstem encoding but not perceptual benefits for musical pitch. Brain and Cognition, 77(1), 1–10. Doi:10.1016/j.bandc.2011.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Bidelman, G. M., Gandour, J. T., & Krishnan, A. (2011c). Cross-domain effects of music and language experience on the representation of pitch in the human auditory brainstem. Journal of Cognitive Neuroscience, 23(2), 425–434. Doi:10.1162/jocn.2009.21362

    Article  PubMed  Google Scholar 

  • Bidelman, G. M., & Krishnan, A. (2011). Brainstem correlates of behavioral and compositional preferences of musical harmony. NeuroReport, 22(5), 212–216. Doi:10.1097/WNR.0b013e328344a689

    Article  PubMed  PubMed Central  Google Scholar 

  • Brugge, J. F., Nourski, K. V., Oya, H., Reale, R. A., et al. (2009). Coding of repetitive transients by auditory cortex on Heschl’s gyrus. Journal of Neurophysiology, 102(4), 2358–2374. Doi:10.1152/jn.91346.2008

    Article  PubMed  PubMed Central  Google Scholar 

  • Cariani, P. A., & Delgutte, B. (1996a). Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch. Journal of Neurophysiology, 76(3), 1717–1734.

    CAS  PubMed  Google Scholar 

  • Cariani, P. A., & Delgutte, B. (1996b). Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. Journal of Neurophysiology, 76(3), 1698–1716.

    CAS  PubMed  Google Scholar 

  • Cedolin, L., & Delgutte, B. (2005). Pitch of complex tones: Rate-place and interspike interval representations in the auditory nerve. Journal of Neurophysiology, 94(1), 347–362. Doi:10.1152/jn.01114.2004. (01114.2004 [pii]).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran, B., Gandour, J. T., & Krishnan, A. (2007a). Neuroplasticity in the processing of pitch dimensions: A multidimensional scaling analysis of the mismatch negativity. Restorative Neurology and Neuroscience, 25(3–4), 195–210.

    PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran, B., & Kraus, N. (2010). The scalp-recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology, 47(2), 236–246. Doi:10.1111/j.1469-8986.2009.00928.x. (PSYP928 [pii]).

    Article  PubMed  Google Scholar 

  • Chandrasekaran, B., Krishnan, A., & Gandour, J. T. (2007b). Mismatch negativity to pitch contours is influenced by language experience. Brain Research, 1128(1), 148–156. Doi:10.1016/j.brainres.2006.10.064. (S0006-8993(06)03179-9 [pii]).

    Article  CAS  PubMed  Google Scholar 

  • Cohen, M. A., Grossberg, S., & Wyse, L. L. (1995). A spectral network model of pitch perception. The Journal of the Acoustical Society of America, 98(2), 862–879.

    Article  CAS  PubMed  Google Scholar 

  • Collins, M. J., & Cullen, J. K., Jr. (1978). Temporal integration of tone glides. The Journal of the Acoustical Society of America, 63(2), 469–473.

    Article  CAS  PubMed  Google Scholar 

  • Galbraith, G. C. (2008). Deficient brainstem encoding in autism. Clinical Neurophysiology, 119(8), 1697–1700. Doi:10.1016/j.clinph.2008.04.012

    Article  PubMed  Google Scholar 

  • Galbraith, G. C., Amaya, E. M., de Rivera, J. M., Donan, N. M., et al. (2004). Brain stem evoked response to forward and reversed speech in humans. NeuroReport, 15(13), 2057–2060.

    Article  PubMed  Google Scholar 

  • Gandour, J. T. (1983). Tone perception in Far Eastern languages. Journal of Phonetics, 11, 149–175.

    Google Scholar 

  • Gandour, J. T. (1994). Phonetics of tone. In R. Asher & J. Simpson (Eds.), The encyclopedia of language & linguistics (Vol. 6, pp. 3116–3123). New York: Pergamon Press.

    Google Scholar 

  • Gandour, J. T., & Harshman, R. A. (1978). Cross language differences in tone perception: A multidimensional scaling investigation. Language and Speech, 21(1), 1–33.

    CAS  PubMed  Google Scholar 

  • Gandour, J. T., & Krishnan, A. (2014). Neural bases of lexical tone. In H. Winskel & P. Padakannaya (Eds.), Handbook of South and Southeast Asian psycholinguistics (pp. 339–349). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Gockel, H. E., Carlyon, R. P., Mehta, A., & Plack, C. J. (2011). The frequency following response (FFR) may reflect pitch-bearing information but is not a direct representation of pitch. Journal of the Association for Research in Otolaryngology, 12(6), 767–782. Doi:10.1007/s10162-011-0284-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold, J. I., & Knudsen, E. I. (2000). A site of auditory experience-dependent plasticity in the neural representation of auditory space in the barn owl’s inferior colliculus. Journal of Neuroscience, 20(9), 3469–3486.

    CAS  PubMed  Google Scholar 

  • Greenberg, S., Marsh, J. T., Brown, W. S., & Smith, J. C. (1987). Neural temporal coding of low pitch. I. Human frequency-following responses to complex tones. Hearing Research, 25(2–3), 91–114.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, T. D., Buchel, C., Frackowiak, R. S., & Patterson, R. D. (1998). Analysis of temporal structure in sound by the human brain. Nature Neuroscience, 1(5), 422–427.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, T. D., & Hall, D. A. (2012). Mapping pitch representation in neural ensembles with fMRI. The Journal of Neuroscience, 32(39), 13343–13347. Doi:10.1523/JNEUROSCI.3813-12.2012

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, T. D., Kumar, S., Sedley, W., Nourski, K. V., et al. (2010). Direct recordings of pitch responses from human auditory cortex. Current Biology, 20(12), 1128–1132. Doi:10.1016/j.cub.2010.04.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths, T. D., Uppenkamp, S., Johnsrude, I., Josephs, O., & Patterson, R. D. (2001). Encoding of the temporal regularity of sound in the human brainstem. Nature Neuroscience, 4(6), 633–637.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, T. D., Warren, J. D., Scott, S. K., Nelken, I., & King, A. J. (2004). Cortical processing of complex sound: A way forward? Trends in Neurosciences, 27(4), 181–185. Doi:10.1016/j.tins.2004.02.005. (S0166223604000566 [pii]).

    Article  CAS  PubMed  Google Scholar 

  • Gutschalk, A., Patterson, R. D., Scherg, M., Uppenkamp, S., & Rupp, A. (2004). Temporal dynamics of pitch in human auditory cortex. Neuroimage, 22(2), 755–766. Doi:10.1016/j.neuroimage.2004.01.025. (S1053811904000680 [pii]).

    Article  PubMed  Google Scholar 

  • Gutschalk, A., Patterson, R. D., Scherg, M., Uppenkamp, S., & Rupp, A. (2007). The effect of temporal context on the sustained pitch response in human auditory cortex. Cerebral Cortex, 17(3), 552–561. Doi:10.1093/cercor/bhj180

    Article  PubMed  Google Scholar 

  • Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99.

    Article  PubMed  Google Scholar 

  • Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402. Doi:10.1038/nrn2113. (nrn2113 [pii]).

    Article  CAS  PubMed  Google Scholar 

  • Howie, J. M. (1976). Acoustical studies of Mandarin vowels and tones. New York: Cambridge University Press.

    Google Scholar 

  • Johnson, K. L., Nicol, T., Zecker, S. G., & Kraus, N. (2008). Developmental plasticity in the human auditory brainstem. The Journal of Neuroscience, 28(15), 4000–4007. Doi:10.1523/JNEUROSCI.0012-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khouw, E., & Ciocca, V. (2007). Perceptual correlates of Cantonese tones. Journal of Phonetics, 35(1), 104–117. Doi:10.1016/j.wocn.2005.10.003

    Article  Google Scholar 

  • Kraus, N., & Nicol, T. (2005). Brainstem origins for cortical ‘what’ and ‘where’ pathways in the auditory system. Trends in Neurosciences, 28(4), 176–181.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, N., & White-Schwoch, T. (2015). Unraveling the biology of auditory learning: A cognitive-sensorimotor-reward framework. Trends in Cognitive Sciences, 19(11), 642–654. Doi:10.1016/j.tics.2015.08.017

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan, A. (1999). Human frequency-following responses to two-tone approximations of steady-state vowels. Audiology and Neuro-Otology, 4(2), 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan, A. (2002). Human frequency-following responses: Representation of steady-state synthetic vowels. Hearing Research, 166(1–2), 192–201.

    Article  PubMed  Google Scholar 

  • Krishnan, A. (2007). Human frequency following response. In R. F. Burkard, M. Don, & J. J. Eggermont (Eds.), Auditory evoked potentials: Basic principles and clinical application (pp. 313–335). Baltimore: Lippincott Williams & Wilkins.

    Google Scholar 

  • Krishnan, A., Bidelman, G. M., & Gandour, J. T. (2010a). Neural representation of pitch salience in the human brainstem revealed by psychophysical and electrophysiological indices. Hearing Research, 268(1–2), 60–66. Doi:10.1016/j.heares.2010.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan, A., & Gandour, J. T. (2009). The role of the auditory brainstem in processing linguistically relevant pitch patterns. Brain and Language, 110(3), 135–148. Doi:10.1016/j.bandl.2009.03.005. (S0093-934X(09)00042-X [pii]).

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan, A., & Gandour, J. T. (2014). Language experience shapes processing of pitch relevant information in the human brainstem and auditory cortex: Electrophysiological evidence. Acoustics Australia, 42(3), 187–199

    Google Scholar 

  • Krishnan, A., Gandour, J. T., Ananthakrishnan, S., & Vijayaraghavan, V. (2014a). Cortical pitch response components index stimulus onset/offset and dynamic features of pitch contours. Neuropsychologia, 59, 1–12. Doi:10.1016/j.neuropsychologia.2014.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan, A., Gandour, J. T., & Bidelman, G. M. (2010b). Brainstem pitch representation in native speakers of Mandarin is less susceptible to degradation of stimulus temporal regularity. Brain Research, 1313, 124–133. Doi:10.1016/j.brainres.2009.11.061

    Article  CAS  PubMed  Google Scholar 

  • Krishnan, A., Gandour, J. T., Bidelman, G. M., & Swaminathan, J. (2009a). Experience-dependent neural representation of dynamic pitch in the brainstem. NeuroReport, 20(4), 408–413. Doi:10.1097/WNR.0b013e3283263000

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan, A., Gandour, J. T., Smalt, C. J., & Bidelman, G. M. (2010c). Language-dependent pitch encoding advantage in the brainstem is not limited to acceleration rates that occur in natural speech. Brain and Language, 114(3), 193–198. Doi:10.1016/j.bandl.2010.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan, A., Gandour, J. T., & Suresh, C. H. (2014b). Cortical pitch response components show differential sensitivity to native and nonnative pitch contours. Brain and Language, 138, 51–60. Doi:10.1016/j.bandl.2014.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan, A., & Parkinson, J. (2000). Human frequency-following response: Representation of tonal sweeps. Audiology and Neuro-Otology, 5(6), 312–321.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan, A., & Plack, C. J. (2011). Neural encoding in the human brainstem relevant to the pitch of complex tones. Hearing Research, 275(1–2), 110–119. Doi:10.1016/j.heares.2010.12.008

    Article  PubMed  Google Scholar 

  • Krishnan, A., Swaminathan, J., & Gandour, J. T. (2009b). Experience-dependent enhancement of linguistic pitch representation in the brainstem is not specific to a speech context. Journal of Cognitive Neuroscience, 21(6), 1092–1105. Doi:10.1162/jocn.2009.21077

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan, A., Xu, Y., Gandour, J. T., & Cariani, P. (2005). Encoding of pitch in the human brainstem is sensitive to language experience. Brain Research. Cognitive Brain Research, 25(1), 161–168. Doi:10.1016/j.cogbrainres.2005.05.004. (S0926-6410(05)00123-0 [pii]).

    Article  PubMed  Google Scholar 

  • Krishnan, A., Xu, Y., Gandour, J. T., & Cariani, P. A. (2004). Human frequency-following response: representation of pitch contours in Chinese tones. Hearing Research, 189(1–2), 1–12. Doi:10.1016/S0378-595(03)00402-7. (S037859503004027 [pii]).

    Article  PubMed  Google Scholar 

  • Krizman, J., Marian, V., Shook, A., Skoe, E., & Kraus, N. (2012). Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proceedings of the National Academy of Sciences of the USA, 109(20), 7877–7881. Doi:10.1073/pnas.1201575109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krizman, J., Skoe, E., Marian, V., & Kraus, N. (2014). Bilingualism increases neural response consistency and attentional control: Evidence for sensory and cognitive coupling. Brain and Language, 128(1), 34–40. Doi:10.1016/j.bandl.2013.11.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Krumbholz, K., Patterson, R. D., Seither-Preisler, A., Lammertmann, C., & Lutkenhoner, B. (2003). Neuromagnetic evidence for a pitch processing center in Heschl’s gyrus. Cerebral Cortex, 13(7), 765–772.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., & Schönwiesner, M. (2012). Mapping human pitch representation in a distributed system using depth-electrode recordings and modeling. The Journal of Neuroscience, 32(39), 13348–13351. Doi:10.1523/JNEUROSCI.3812-12.2012

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stephan, K. E., Warren, J. D., Friston, K. J., & Griffiths, T. D. (2007). Hierarchical processing of auditory objects in humans. PLoS Computational Biology, 3(6), e100. Doi:10.1371/journal.pcbi.0030100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, T., Liang, L., & Wang, X. (2001). Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nature Neuroscience, 4(11), 1131–1138. Doi:10.1038/nn737

    Article  CAS  PubMed  Google Scholar 

  • Luo, F., Wang, Q., Kashani, A., & Yan, J. (2008). Corticofugal modulation of initial sound processing in the brain. The Journal of Neuroscience, 28(45), 11615–11621. Doi:10.1523/JNEUROSCI.3972-08.2008. (28/45/11615[pii]).

    Article  CAS  PubMed  Google Scholar 

  • Meddis, R., & O’Mard, L. (1997). A unitary model of pitch perception. Journal of the Acoustical Society of America, 102(3), 1811–1820.

    Article  CAS  PubMed  Google Scholar 

  • Micheyl, C., Schrater, P. R., & Oxenham, A. J. (2013). Auditory frequency and intensity discrimination explained using a cortical population rate code. PLoS Computational Biology, 9(11), e1003336. Doi:10.1371/journal.pcbi.1003336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oxenham, A. J. (2012). Pitch perception. The Journal of Neuroscience, 32(39), 13335–13338. Doi:10.1523/JNEUROSCI.3815-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson, R. D., Allerhand, M. H., & Giguere, C. (1995). Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform. Journal of the Acoustical Society of America, 98(4), 1890–1894.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, R. D., Handel, S., Yost, W. A., & Datta, A. J. (1996). The relative strength of the tone and noise components in iterated ripple noise. The Journal of the Acoustical Society of America, 100(5), 3286–3294.

    Article  Google Scholar 

  • Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36(4), 767–776.

    Article  CAS  PubMed  Google Scholar 

  • Penagos, H., Melcher, J. R., & Oxenham, A. J. (2004). A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. The Journal of Neuroscience, 24(30), 6810–6815. Doi:10.1523/JNEUROSCI.0383-04.2004. (24/30/6810 [pii]).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, G., Zheng, H.-Y., Gong, T., Yang, R.-X., et al. (2010). The influence of language experience on categorical perception of pitch contours. Journal of Phonetics, 38, 616–624.

    Article  Google Scholar 

  • Philibert, B., Collet, L., Vesson, J. F., & Veuillet, E. (2005). The auditory acclimatization effect in sensorineural hearing-impaired listeners: Evidence for functional plasticity. Hearing Research, 205(1–2), 131–142.

    Article  CAS  PubMed  Google Scholar 

  • Plyler, P. N., & Ananthanarayan, A. K. (2001). Human frequency-following responses: Representation of second formant transitions in normal-hearing and hearing-impaired listeners. Journal of the American Academy of Audiology, 12(10), 523–533.

    CAS  PubMed  Google Scholar 

  • Poeppel, D., Idsardi, W. J., & van Wassenhove, V. (2008). Speech perception at the interface of neurobiology and linguistics. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1493), 1071–1086. Doi:10.1098/rstb.2007.2160. (TM42571U1117682 [pii]).

    Article  PubMed  Google Scholar 

  • Price, C., Thierry, G., & Griffiths, T. (2005). Speech-specific auditory processing: Where is it? Trends in Cognitive Sciences, 9(6), 271–276.

    Article  PubMed  Google Scholar 

  • Puschmann, S., Uppenkamp, S., Kollmeier, B., & Thiel, C. M. (2010). Dichotic pitch activates pitch processing centre in Heschl’s gyrus. Neuroimage, 49(2), 1641–1649. Doi:10.1016/j.neuroimage.2009.09.045

    Article  PubMed  Google Scholar 

  • Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87. Doi:10.1038/4580

    Article  CAS  PubMed  Google Scholar 

  • Russo, N. M., Nicol, T. G., Zecker, S. G., Hayes, E. A., & Kraus, N. (2005). Auditory training improves neural timing in the human brainstem. Behavioural Brain Research, 156(1), 95–103.

    Article  PubMed  Google Scholar 

  • Russo, N. M., Skoe, E., Trommer, B., Nicol, T., et al. (2008). Deficient brainstem encoding of pitch in children with autism spectrum disorders. Clinical Neurophysiology, 119(8), 1720–1731. Doi:10.1016/j.clinph.2008.01.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schönwiesner, M., Rubsamen, R., & von Cramon, D. Y. (2005). Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex. European Journal of Neuroscience, 22(6), 1521–1528. Doi:10.1111/j.1460-9568.2005.04315.x

    Article  PubMed  Google Scholar 

  • Schouten, M. E. (1985). Identification and discrimination of sweep tones. Perception and Psychophysics, 37(4), 369–376.

    Article  CAS  PubMed  Google Scholar 

  • Scott, S. K. (2003). How might we conceptualize speech perception? The view from neurobiology. Journal of Phonetics, 31, 417–422.

    Article  Google Scholar 

  • Scott, S. K., & Johnsrude, I. S. (2003). The neuroanatomical and functional organization of speech perception. Trends in Neurosciences, 26(2), 100–107.

    Article  CAS  PubMed  Google Scholar 

  • Shofner, W. P. (1999). Responses of cochlear nucleus units in the chinchilla to iterated rippled noises: Analysis of neural autocorrelograms. Journal of Neurophysiology, 81(6), 2662–2674.

    CAS  PubMed  Google Scholar 

  • Shore, S. E., Clopton, B. M., & Au, Y. N. (1987). Unit responses in ventral cochlear nucleus reflect cochlear coding of rapid frequency sweeps. Journal of the Acoustical Society of America, 82(2), 471–478.

    Article  CAS  PubMed  Google Scholar 

  • Shore, S. E., & Nuttall, A. L. (1985). High-synchrony cochlear compound action potentials evoked by rising frequency-swept tone bursts. The Journal of the Acoustical Society of America, 78(4), 1286–1295.

    Article  CAS  PubMed  Google Scholar 

  • Song, J. H., Banai, K., & Kraus, N. (2008a). Brainstem timing deficits in children with learning impairment may result from corticofugal origins. Audiology and Neuro-Otology, 13(5), 335–344. Doi:10.1159/000132689

    Article  PubMed  Google Scholar 

  • Song, J. H., Skoe, E., Wong, P. C. M., & Kraus, N. (2008b). Plasticity in the adult human auditory brainstem following short-term linguistic training. Journal of Cognitive Neuroscience, 20(10), 1892–1902.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinschneider, M., Reser, D. H., Fishman, Y. I., Schroeder, C. E., & Arezzo, J. C. (1998). Click train encoding in primary auditory cortex of the awake monkey: Evidence for two mechanisms subserving pitch perception. The Journal of the Acoustical Society of America, 104(5), 2935–2955.

    Article  CAS  PubMed  Google Scholar 

  • Suga, N. (1990). Biosonar and neural computation in bats. Scientific American, 262(6), 60–68.

    Article  CAS  PubMed  Google Scholar 

  • Suga, N. (1994). Processing of auditory information carried by complex species specific sounds. In M. S. Gazzaniga & E. Bizzi (Eds.), The cognitive neurosciences (pp. 295–318). Cambridge, MA: MIT Press.

    Google Scholar 

  • Suga, N., & Ma, X. (2003). Multiparametric corticofugal modulation and plasticity in the auditory system. Nature Reviews Neuroscience, 4(10), 783–794.

    Article  CAS  PubMed  Google Scholar 

  • Suga, N., Ma, X., Gao, E., Sakai, M., & Chowdhury, S. A. (2003). Descending system and plasticity for auditory signal processing: Neuroethological data for speech scientists. Speech Communication, 41(1), 189–200.

    Article  Google Scholar 

  • Swaminathan, J., Krishnan, A., & Gandour, J. T. (2008). Pitch encoding in speech and nonspeech contexts in the human auditory brainstem. NeuroReport, 19(11), 1163–1167. Doi:10.1097/WNR.0b013e3283088d31. (00001756-200807160-00017 [pii]).

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, K. M., Bizley, J. K., King, A. J., & Schnupp, J. W. (2011). Cortical encoding of pitch: Recent results and open questions. Hearing Research, 271(1–2), 74–87. Doi:10.1016/j.heares.2010.04.015

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong, P. C. (2002). Hemispheric specialization of linguistic pitch patterns. Brain Research Bulletin, 59(2), 83–95.

    Article  PubMed  Google Scholar 

  • Wong, P. C., Parsons, L. M., Martinez, M., & Diehl, R. L. (2004). The role of the insular cortex in pitch pattern perception: The effect of linguistic contexts. The Journal of Neuroscience, 24(41), 9153–9160.

    Article  CAS  PubMed  Google Scholar 

  • Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–422. Doi:10.1038/nn1872. (nn1872 [pii]).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y. (1997). Contextual tonal variations in Mandarin. Journal of Phonetics, 25, 61–83.

    Article  Google Scholar 

  • Xu, Y., Gandour, J. T., & Francis, A. L. (2006a). Effects of language experience and stimulus complexity on the categorical perception of pitch direction. Journal of the Acoustical Society of America, 120(2), 1063–1074.

    Article  PubMed  Google Scholar 

  • Xu, Y., Krishnan, A., & Gandour, J. T. (2006b). Specificity of experience-dependent pitch representation in the brainstem. NeuroReport, 17(15), 1601–1605. Doi:10.1097/01.wnr.0000236865.31705.3a. (00001756-200610230-00008 [pii]).

    Article  PubMed  Google Scholar 

  • Yip, M. (2002). Tone. New York: Cambridge University Press.

    Book  Google Scholar 

  • Yost, W. A. (1996). Pitch of iterated rippled noise. The Journal of the Acoustical Society of America, 100(1), 511–518.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre, R. J., & Baum, S. R. (2012). Musical melody and speech intonation: Singing a different tune. PLoS Biology, 10(7), e1001372. Doi:10.1371/journal.pbio.100137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zatorre, R. J., & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11(10), 946–953.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre, R. J., & Gandour, J. T. (2008). Neural specializations for speech and pitch: Moving beyond the dichotomies. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1493), 1087–1104. Doi:10.1098/rstb.2007.2161. (J412P80575385013 [pii]).

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by NIH 5R01DC008549-06 (A.K.).

Compliance with Ethics Requirements

Ananthanarayan Krishnan and Jackson T. Gandour declared that they had no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananthanarayan Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Krishnan, A., Gandour, J.T. (2017). Shaping Brainstem Representation of Pitch-Relevant Information by Language Experience. In: Kraus, N., Anderson, S., White-Schwoch, T., Fay, R., Popper, A. (eds) The Frequency-Following Response. Springer Handbook of Auditory Research, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-47944-6_3

Download citation

Publish with us

Policies and ethics