Skip to main content

Neurobiology of Literacy and Reading Disorders

  • Chapter
  • First Online:
Book cover The Frequency-Following Response

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 61))

Abstract

Literacy acquisition is complex and multifactorial. Successful literacy acquisition places extreme demands on sensory and cognitive processes. Individuals with reading disorders demonstrate a range of linguistic, sensory, and cognitive deficits. In this chapter, the relationship between reading ability and the frequency-following response (FFR) is examined. The utility of the FFR in assessment of successful literacy and reading disorders is reviewed along with the use of FFR as an index of remediation. Finally, the chapter concludes with a discussion of current issues and future directions regarding the utility of the FFR as an objective neural metric of deficits in literacy disorders. Throughout these sections the distinct cognitive, linguistic, and experiential influences on the FFR are highlighted to further demonstrate how the FFR to speech may serve as an auditory biomarker to predict literacy disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams, D. A., Nicol, T., Zecker, S. G., & Kraus, N. (2006). Auditory brainstem timing predicts cerebral asymmetry for speech. The Journal of Neuroscience, 26(43), 11131–11137.

    Article  CAS  PubMed  Google Scholar 

  • Ahissar, M., Protopapas, A., Reid, M., & Merzenich, M. M. (2000). Auditory processing parallels reading abilities in adults. Proceedings of the National Academy of Sciences of the U S A, 97(12), 6832–6837.

    Article  CAS  Google Scholar 

  • Ahissar, M., Lubin, Y., Putter-Katz, H., & Banai, K. (2006). Dyslexia and the failure to form a perceptual anchor. Nature Neuroscience, 9(12), 1558–1564. Doi:10.1038/nn1800

    Article  CAS  PubMed  Google Scholar 

  • Anderson, S., Skoe, E., Chandrasekaran, B., & Kraus, N. (2010). Neural timing is linked to speech perception in noise. The Journal of Neuroscience, 30(14), 4922–4926.

    Article  CAS  PubMed  Google Scholar 

  • Banai, K., & Ahissar, M. (2006). Auditory processing deficits in dyslexia: Task or stimulus related? Cerebral Cortex, 16(12), 1718–1728. Doi:10.1093/cercor/bhj107

    Article  PubMed  Google Scholar 

  • Banai, K., Nicol, T., Zecker, S. G., & Kraus, N. (2005). Brainstem timing: Implications for cortical processing and literacy. The Journal of Neuroscience, 25(43), 9850–9857.

    Article  CAS  PubMed  Google Scholar 

  • Banai, K., Hornickel, J., Skoe, E., Nicol, T., et al. (2009). Reading and subcortical auditory function. Cerebral Cortex, 19(11), 2699–2707.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll, J. M., & Snowling, M. J. (2004). Language and phonological skills in children at high risk of reading difficulties. Journal of Child Psychology and Psychiatry, 45(3), 631–640.

    Article  PubMed  Google Scholar 

  • Centanni, T. M., Booker, A. B., Sloan, A. M., Chen, F., et al. (2014). Knockdown of the dyslexia-associated gene Kiaa0319 impairs temporal responses to speech stimuli in rat primary auditory cortex. Cerebral Cortex, 24(7), 1753–1766.

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran, B., & Kraus, N. (2010). The scalp-recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology, 47(2), 236–246.

    Article  PubMed  Google Scholar 

  • Chandrasekaran, B., & Kraus, N. (2012). Biological factors contributing to reading ability: Subcortical auditory function. In A. A. Benasich & R. H. Fitch (Eds.), Developmental dyslexia: Early precursors, neurobehavioral markers and biological substrates. Baltimore, MD: Paul H Brookes Publishing.

    Google Scholar 

  • Chandrasekaran, B., Hornickel, J., Skoe, E., Nicol, T., & Kraus, N. (2009). Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: Implications for developmental dyslexia. Neuron, 64(3), 311–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran, B., Skoe, E., & Kraus, N. (2014). An integrative model of subcortical auditory plasticity. Brain Topography, 27(4), 539–552.

    Article  PubMed  Google Scholar 

  • Coffey, E. B., Herholz, S. C., Chepesiuk, A. M., Baillet, S., & Zatorre, R. J. (2016). Cortical contributions to the auditory frequency-following response revealed by MEG. Nature Communications, 7. Doi:10.1038/ncomms11070

  • Crandell, C., Smaldino, J., & Flexer, C. (2005). Sound field amplification: Applications to speech perception and classroom acoustics (2nd ed.). Clifton Park, NY: Thomson Delmar Learning.

    Google Scholar 

  • Galbraith, G. C., Olfman, D. M., & Huffman, T. M. (2003). Selective attention affects human brain stem frequency-following response. NeuroReport, 14(5), 735–738.

    Article  PubMed  Google Scholar 

  • Gori, S., Seitz, A. R., Ronconi, L., Franceschini, S., & Facoetti, A. (2015). Multiple causal links between magnocellular-sorsal pathway deficit and developmental dyslexia. Cerebral Cortex. Doi:10.1093/cercor/bhv206

    Google Scholar 

  • Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in Cognitive Sciences, 15(1), 3–10.

    Article  PubMed  Google Scholar 

  • Goswami, U. (2015). Sensory theories of developmental dyslexia: Three challenges for research. Nature Reviews Neuroscience, 16(1), 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Hairston, W. D., Letowski, T. R., & McDowell, K. (2013). Task-related suppression of the brainstem frequency following response. PLoS ONE, 8(2), e55215. Doi:10.1371/journal.pone.0055215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrar, V., Tammam, J., Pérez-Bellido, A., Pitt, A., et al. (2014). Multisensory integration and attention in developmental dyslexia. Current Biology, 24(5), 531–535.

    Article  CAS  PubMed  Google Scholar 

  • Hornickel, J., & Kraus, N. (2013). Unstable representation of sound: A biological marker of dyslexia. The Journal of Neuroscience, 33(8), 3500–3504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornickel, J., Skoe, E., Nicol, T., Zecker, S., & Kraus, N. (2009). Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. Proceedings of the National Academy of Sciences of the USA, 106(31), 13022–13027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornickel, J., Zecker, S. G., Bradlow, A. R., & Kraus, N. (2012). Assistive listening devices drive neuroplasticity in children with dyslexia. Proceedings of the National Academy of Sciences of the USA, 109(41), 16731–16736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffman, R. F., & Henson, O. (1990). The descending auditory pathway and acousticomotor systems: Connections with the inferior colliculus. Brain Research Reviews, 15(3), 295–323.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11(8), 599–605.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, N., & Nicol, T. (2005). Brainstem origins for cortical ‘what’and ‘where’pathways in the auditory system. Trends in Neurosciences, 28(4), 176–181.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, N., & White-Schwoch, T. (2015). Unraveling the biology of auditory learning: A cognitive-sensorimotor-reward framework. Trends in Cognitive Sciences, 19(11), 642–654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan, A., & Gandour, J. T. (2009). The role of the auditory brainstem in processing linguistically relevant pitch patterns. Brain and Language, 110(3), 135–148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krizman, J., Marian, V., Shook, A., Skoe, E., & Kraus, N. (2012). Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proceedings of the National Academy of Sciences of the USA, 109(20), 7877–7881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malmierca, M. S., Anderson, L. A., & Antunes, F. M. (2015). The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: A potential neuronal correlate for predictive coding. Frontiers in Systems Neuroscience, 9(19). Doi:10.3389/fnsys.2015.00019

  • Mcanally, K. I., & Stein, J. F. (1996). Auditory temporal coding in dyslexia. Proceedings of the Royal Society of London B: Biological Sciences, 263(1373), 961–965.

    Article  CAS  Google Scholar 

  • Moats, L. C., & Dakin, K. E. (2007). Basic facts about dyslexia and other reading problems. Baltimore, MD: International Dyslexia Association.

    Google Scholar 

  • Papadimitriou, A. M., & Vlachos, F. M. (2014). Which specific skills developing during preschool years predict the reading performance in the first and second grade of primary school? Early Child Development and Care, 184(11), 1706–1722.

    Article  Google Scholar 

  • Ramus, F. (2003). Developmental dyslexia: Specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13(2), 212–218.

    Article  CAS  PubMed  Google Scholar 

  • Ramus, F. (2014). Neuroimaging sheds new light on the phonological deficit in dyslexia. Trends in Cognitive Sciences, 18(6), 274–275.

    Article  PubMed  Google Scholar 

  • Ramus, F., & Ahissar, M. (2012). Developmental dyslexia: The difficulties of interpreting poor performance, and the importance of normal performance. Cognitive Neuropsychology, 29(1–2), 104–122.

    Article  PubMed  Google Scholar 

  • Ramus, F., Rosen, S., Dakin, S. C., Day, B. L., et al. (2003). Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults. Brain, 126(4), 841–865.

    Article  PubMed  Google Scholar 

  • Shinn-Cunningham, B. G. (2008). Object-based auditory and visual attention. Trends in Cognitive Sciences, 12(5), 182–186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skoe, E., Krizman, J., Spitzer, E., & Kraus, N. (2015). Prior experience biases subcortical sensitivity to sound patterns. Journal of Cognitive Neuroscience, 27(1), 124–140.

    Article  PubMed  Google Scholar 

  • Smith, J. C., Marsh, J. T., & Brown, W. S. (1975). Far-field recorded frequency-following responses: Evidence for the locus of brainstem sources. Electroencephalography and Clinical Neurophysiology, 39(5), 465–472.

    Article  CAS  PubMed  Google Scholar 

  • Snowling, M. J. (1995). Phonological processing and developmental dyslexia. Journal of Research in Reading, 18(2), 132–138.

    Article  Google Scholar 

  • Song, J. H., Skoe, E., Wong, P. C., & Kraus, N. (2008). Plasticity in the adult human auditory brainstem following short-term linguistic training. Journal of Cognitive Neuroscience, 20(10), 1892–1902.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperling, A. J., Lu, Z.-L., Manis, F. R., & Seidenberg, M. S. (2005). Deficits in perceptual noise exclusion in developmental dyslexia. Nature Neuroscience, 8(7), 862–863.

    Article  CAS  PubMed  Google Scholar 

  • Stefanics, G., Fosker, T., Huss, M., Mead, N., et al. (2011). Auditory sensory deficits in developmental dyslexia: A longitudinal ERP study. Neuroimage, 57(3), 723–732.

    Article  PubMed  Google Scholar 

  • Stein, J. (2001). The magnocellular theory of developmental dyslexia. Dyslexia, 7(1), 12–36.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, C., Harn, B., Chard, D. J., Currin, J., et al. (2013). Examining the role of attention and instruction in at–risk kindergarteners electrophysiological measures of selective auditory attention before and after an early literacy intervention. Journal of Learning Disabilities, 46(1), 73–86.

    Article  PubMed  Google Scholar 

  • Suga, N. (2008). Role of corticofugal feedback in hearing. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 194(2), 169–183.

    Article  PubMed  Google Scholar 

  • Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9(2), 182–198.

    Article  CAS  PubMed  Google Scholar 

  • Varghese, L., Bharadwaj, H. M., & Shinn-Cunningham, B. G. (2015). Evidence against attentional state modulating scalp-recorded auditory brainstem steady-state responses. Brain Research, 1626, 146–164. Doi:10.1016/j.brainres.2015.06.038

    Article  CAS  PubMed  Google Scholar 

  • Wagner, R. K., & Torgesen, J. K. (1987). The nature of phonological processing and its causal role in the acquisition of reading skills. Psychological Bulletin, 101(2), 192–212. Doi:10.1162/jocn_a_0069

    Article  Google Scholar 

  • Wible, B., Nicol, T., & Kraus, N. (2005). Correlation between brainstem and cortical auditory processes in normal and language-impaired children. Brain, 128(2), 417–423.

    Article  PubMed  Google Scholar 

  • White-Schwoch, T., & Kraus, N. (2013). Physiologic discrimination of stop consonants relates to phonological skills in pre-readers: A biomarker for subsequent reading ability? Frontiers in Human Neuroscience, 7, 899. Doi:10.3389/fnhum.2013.00899

    Article  PubMed  PubMed Central  Google Scholar 

  • White-Schwoch, T., Davies, E. C., Thompson, E. C., Carr, K. W., et al. (2015a). Auditory-neurophysiological responses to speech during early childhood: Effects of background noise. Hearing Research, 328, 34–47.

    Article  PubMed  PubMed Central  Google Scholar 

  • White-Schwoch, T., Carr, K. W., Thompson, E. C., Anderson, S., et al. (2015b). Auditory processing in noise: A preschool biomarker for literacy. PLoS Biology, 13(7), e1002196. Doi:10.1371/journal.pbio.1002196

    Article  PubMed  PubMed Central  Google Scholar 

  • Winer, J. A. (2005). Decoding the auditory corticofugal systems. Hearing Research, 207(1), 1–9.

    Article  PubMed  Google Scholar 

  • Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler, J. C., Pech-Georgel, C., George, F., & Lorenzi, C. (2009). Speech-perception-in-noise deficits in dyslexia. Developmental Science, 12(5), 732–745.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute on Deafness and Other Communication Disorders of the National Institutes of Health under Award Number R01DC013315 (BC).

Compliance with Ethics Requirements

The authors, Rachel Reetzke, Zilong Xie, and Bharath Chandrasekaran, had no conflict of interest. Data represented in Fig. 10.1 was supported by the National Institute on Deafness and Other Communication Disorders, National Institutes of Health (Grant R01DC013315 to BC). The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharath Chandrasekaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Reetzke, R., Xie, Z., Chandrasekaran, B. (2017). Neurobiology of Literacy and Reading Disorders. In: Kraus, N., Anderson, S., White-Schwoch, T., Fay, R., Popper, A. (eds) The Frequency-Following Response. Springer Handbook of Auditory Research, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-47944-6_10

Download citation

Publish with us

Policies and ethics