Skip to main content

Phages Against Infectious Diseases

  • Chapter
  • First Online:
Bioprospecting

Part of the book series: Topics in Biodiversity and Conservation ((TOBC,volume 16))

Abstract

(Bacterio)phages (viruses that infect bacteria) are the most abundant entities on earth. Phages are the natural predators of bacteria and therefore have a great antibacterial potential. Immediately after their discovery, in the early twentieth century and before the antibiotic era, they were extensively used to treat infectious diseases. Now, on account of the spread of antibiotic resistance, the interest in phage therapy has been reborn and the recent advances on phage biology and host interactions have reinforced their therapeutic potential. This chapter describes the most important features of phages that make them valuable alternatives to antibiotics in controlling infectious diseases and the challenges that phage therapy is facing for them to be brought into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulamir AS, Jassim SA, Abu Bakar F (2014) Novel approach of using a cocktail of designed bacteriophages against gut pathogenic E. coli for bacterial load biocontrol. Ann Clin Microbiol Antimicrob 13:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47

    Article  CAS  PubMed  Google Scholar 

  • Ackermann H-W (2006) Classification of bacteriophages. In: Calendar R (ed) The bacteriophages. Oxford University Press, New York, pp. 8–16

    Google Scholar 

  • Ackermann HW (2007) 5500 Phages examined in the electron microscope. Arch Virol 152:227–243

    Article  CAS  PubMed  Google Scholar 

  • Alemayehu D, Casey PG, McAuliffe O, Guinane CM, Martin JG et al (2012) Bacteriophages phiMR299-2 and phiNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio 3:e00029–e00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachrach G, Leizerovici-Zigmond M, Zlotkin A, Naor R, Steinberg D (2003) Bacteriophage isolation from human saliva. Lett Appl Microbiol 36:50–53

    Article  PubMed  Google Scholar 

  • Barrow PA, Soothill JS (1997) Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol 5:268–271

    Article  CAS  PubMed  Google Scholar 

  • Brussow H, Bruttin A, Desiere F, Lucchini S, Foley S (1998) Molecular ecology and evolution of Streptococcus thermophilus bacteriophages – a review. Virus Genes 16:95–109

    Article  CAS  PubMed  Google Scholar 

  • Bruttin A, Brussow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49:2874–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bull JJ, Otto G, Molineux IJ (2012) In vivo growth rates are poorly correlated with phage therapy success in a mouse infection model. Antimicrob Agents Chemother 56:949–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao F, Wang X, Wang L, Li Z, Che J et al (2015a) Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. Biomed Res Int 2015:752930

    PubMed  PubMed Central  Google Scholar 

  • Cao Z, Zhang J, Niu YD, Cui N, Ma Y, et al. (2015b) Isolation and characterization of a “phiKMV-like” bacteriophage and its therapeutic effect on mink hemorrhagic pneumonia. PLoS One 10: e0116571.

    Google Scholar 

  • Carlton RM (1999) Phage therapy: past history and future prospects. Arch Immunol Ther Exp (Warsz) 47:267–274

    CAS  Google Scholar 

  • Chhibber S, Kaur T, Sandeep K (2013) Co-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One 8:e56022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhibber S, Gupta P, Kaur S (2014) Bacteriophage as effective decolonising agent for elimination of MRSA from anterior nares of BALB/c mice. BMC Microbiol 14:212

    Article  PubMed  PubMed Central  Google Scholar 

  • d’Herelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. CR Acad Sci Paris 165:373–375

    Google Scholar 

  • d’Herelle F (1926) The bacteriophage and its behaviour. In: dʼHerelle F (ed). The Williams & Wilkins Company, Baltimore

    Google Scholar 

  • Dabrowska K, Switala-Jelen K, Opolski A, Weber-Dabrowska B, Gorski A (2005) Bacteriophage penetration in vertebrates. J Appl Microbiol 98:7–13

    Article  CAS  PubMed  Google Scholar 

  • Dennehy JJ (2012) What can phages tell us about host-pathogen coevolution? Int J Evol Biol 2012:396165

    Article  PubMed  PubMed Central  Google Scholar 

  • Diomede L, Albani D, Bianchi M, Salmona M (2001) Endotoxin regulates the maturation of sterol regulatory element binding protein-1 through the induction of cytokines. Eur Cytokine Netw 12:625–630

    CAS  PubMed  Google Scholar 

  • Dufour N, Debarbieux L, Fromentin M, Ricard JD (2015) Treatment of highly virulent extraintestinal pathogenic Escherichia coli pneumonia with bacteriophages. Crit Care Med 43:e190–e198

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM et al (2010) Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 54:397–404

    Article  CAS  PubMed  Google Scholar 

  • Fukuda K, Ishida W, Uchiyama J, Rashel M, Kato S et al (2012) Pseudomonas aeruginosa keratitis in mice: effects of topical bacteriophage KPP12 administration. PLoS One 7:e47742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14

    Article  CAS  PubMed  Google Scholar 

  • Goodridge LD (2010) Designing phage therapeutics. Curr Pharm Biotechnol 11:15–27

    Article  CAS  PubMed  Google Scholar 

  • Gorski A, Miedzybrodzki R, Borysowski J, Weber-Dabrowska B, Lobocka M et al (2009) Bacteriophage therapy for the treatment of infections. Curr Opin Investig Drugs 10:766–774

    CAS  PubMed  Google Scholar 

  • Gu J, Liu X, Li Y, Han W, Lei L et al (2012) A method for generation phage cocktail with great therapeutic potential. PLoS One 7:e31698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Prasad Y (2011) Efficacy of polyvalent bacteriophage P-27/HP to control multidrug resistant Staphylococcus aureus associated with human infections. Curr Microbiol 62:255–260

    Article  CAS  PubMed  Google Scholar 

  • Guttman B, Raya R, Kutter E (2005) Basic phage biology. In: Kutter E, Sulakvelidze A (eds) Bacteriophages – biology and applications. CRC Press, Boca Raton

    Google Scholar 

  • Hagens S, Habel A, von Ahsen U, von Gabain A, Blasi U (2004) Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob Agents Chemother 48:3817–3822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AR, De Vos D, Friman VP, Pirnay JP, Buckling A (2012) Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol 78:5646–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hankin EH (1896) L’action bactericide des eaux de la Jumna et du Gange sur le vibrion du cholera. Ann Inst Pasteur 10:511

    Google Scholar 

  • Häusler T (2006) Viruses vs. superbugs – a solution to the antibiotic crisis? Macmillan, New York

    Book  Google Scholar 

  • Henry M, Lavigne R, Debarbieux L (2013) Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob Agents Chemother 57:5961–5968

    Article  PubMed  PubMed Central  Google Scholar 

  • Hitch G, Pratten J, Taylor PW (2004) Isolation of bacteriophages from the oral cavity. Lett Appl Microbiol 39:215–219

    Article  CAS  PubMed  Google Scholar 

  • Holzheimer RG (2001) Antibiotic induced endotoxin release and clinical sepsis: a review. J Chemother 13 Spec No 1: 159–172

    Google Scholar 

  • Hung CH, Kuo CF, Wang CH, Wu CM, Tsao N (2011) Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrob Agents Chemother 55:1358–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Maniv I, Arain F, Wang Y, Levin BR et al (2013) Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS Genet 9:e1003844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AP (2015) Surveillance of antibiotic resistance. Philos Trans Royal Soc B-Biol Sci 370

    Google Scholar 

  • Kakikawa M, Yokoi K, Kimoto H, Nakano M, Kawasaki KI et al (2002) Molecular analysis of the lysis protein Lys encoded by Lactobacillus plantarum phage theta g1e. Gene 299:227–234

    Article  CAS  PubMed  Google Scholar 

  • Keen EC (2012) Phage therapy: concept to cure. Front Microbiol 3:238

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim KP, Cha JD, Jang EH, Klumpp J, Hagens S et al (2008) PEGylation of bacteriophages increases blood circulation time and reduces T-helper type 1 immune response. Microb Biotechnol 1:247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Chhibber S (2011) Acute lung inflammation in Klebsiella pneumoniae B5055-induced pneumonia and sepsis in BALB/c mice: a comparative study. Inflammation 34:452–462

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Harjai K, Chhibber S (2011) Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. J Med Microbiol 60:205–210

    Article  PubMed  Google Scholar 

  • Kutter E, Raya R, Carlson K (2005) Molecular mechanisms of phage infection. In: Kutter E, Sulakvelidze A, (eds). CRC Press

    Google Scholar 

  • Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L et al (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    Article  CAS  PubMed  Google Scholar 

  • Kutter EM, Kuhl SJ, Abedon ST (2015) Re-establishing a place for phage therapy in western medicine. Future Microbiol 10:685–688

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Choi S, Shin H, Lee JH, Choi SH (2014) Vibrio vulnificus bacteriophage SSP002 as a possible biocontrol agent. Appl Environ Microbiol 80:515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2:166–173

    Article  CAS  PubMed  Google Scholar 

  • Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104:11197–11202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TK, Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A 106:4629–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luria SE, Delbruck M, Anderson TF (1943) Electron microscope studies of bacterial viruses. J Bacteriol 46:57–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lusiak-Szelachowska M, Zaczek M, Weber-Dabrowska B, Miedzybrodzki R, Klak M et al (2014) Phage neutralization by sera of patients receiving phage therapy. Viral Immunol 27:295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ly-Chatain MH (2014) The factors affecting effectiveness of treatment in phages therapy. Front Microbiol 5:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahichi F, Synnott AJ, Yamamichi K, Osada T, Tanji Y (2009) Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol Lett 295:211–217

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Freeman TA, Hilbert DW, Duff M, Fuortes M et al (2005) Lysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis model. Surgery 137:639–646

    Article  PubMed  Google Scholar 

  • Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T et al (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219

    Article  PubMed  Google Scholar 

  • Maura D, Galtier M, Le Bouguenec C, Debarbieux L (2012) Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob Agents Chemother 56:6235–6242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnyk AH, Wong A, Kassen R (2015) The fitness costs of antibiotic resistance mutations. Evol Appl 8:273–283

    Article  PubMed  Google Scholar 

  • Mendes JJ, Leandro C, Mottola C, Barbosa R, Silva FA et al (2014) In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections. J Med Microbiol 63:1055–1065

    Article  PubMed  Google Scholar 

  • Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M et al (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One 4:e4944

    Article  PubMed  PubMed Central  Google Scholar 

  • Merril CR, Biswas B, Carlton R, Jensen NC, Creed GJ et al (1996) Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci U S A 93:3188–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miedzybrodzki R, Borysowski J, Weber-Dabrowska B, Fortuna W, Letkiewicz S, et al. (2012) Clinical aspects of phage therapy. Adv Virus Res, Vol 83: Bacteriophages B 83: 73–121

    Google Scholar 

  • Minot S, Sinha R, Chen J, Li HZ, Keilbaugh SA et al (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21:1616–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modi SR, Lee HH, Spina CS, Collins JJ (2013) Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moradpour Z, Ghasemian A (2011) Modified phages: novel antimicrobial agents to combat infectious diseases. Biotechnol Adv 29:732–738

    Article  CAS  PubMed  Google Scholar 

  • Nelson D (2004) Phage taxonomy: we agree to disagree. J Bacteriol 186:7029–7031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobrega FL, Costa AR, Kluskens LD, Azeredo J (2015) Revisiting phage therapy: new applications for old resources. Trends Microbiol 23:185–191

    Article  CAS  PubMed  Google Scholar 

  • Paul VD, Sundarrajan S, Rajagopalan SS, Hariharan S, Kempashanaiah N et al (2011) Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection. BMC Microbiol 11:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne RJ, Jansen VA (2001) Understanding bacteriophage therapy as a density-dependent kinetic process. J Theor Biol 208:37–48

    Article  CAS  PubMed  Google Scholar 

  • Pirnay JP, De Vos D, Verbeken G, Merabishvili M, Chanishvili N et al (2011) The phage therapy paradigm: pret-a-porter or sur-mesure? Pharm Res 28:934–937

    Article  CAS  PubMed  Google Scholar 

  • Pirnay JP, Blasdel BG, Bretaudeau L, Buckling A, Chanishvili N et al (2015) Quality and safety requirements for sustainable phage therapy products. Pharm Res 32:2173–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS et al (2009) Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 18(237-238):240–233

    Google Scholar 

  • Sao-Jose C, Parreira R, Vieira G, Santos MA (2000) The N-terminal region of the Oenococcus oeni bacteriophage fOg44 lysin behaves as a bona fide signal peptide in Escherichia coli and as a cis-inhibitory element, preventing lytic activity on oenococcal cells. J Bacteriol 182:5823–5831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholl D, Adhya S, Merril C (2005) Escherichia coli K1’s capsule is a barrier to bacteriophage T7. Appl Environ Microbiol 71:4872–4874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seed KD, Lazinski DW, Calderwood SB, Camilli A (2013) A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494:489–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semler DD, Goudie AD, Finlay WH, Dennis JJ (2014) Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections. Antimicrob Agents Chemother 58:4005–4013

    Article  PubMed  PubMed Central  Google Scholar 

  • Shivshetty N, Hosamani R, Ahmed L, Oli AK, Sannauallah S, et al. (2014) Experimental protection of diabetic mice against Lethal P. aeruginosa infection by bacteriophage. Biomed Res Int 2014: 793242

    Google Scholar 

  • Skurnik M, Strauch E (2006) Phage therapy: facts and fiction. Int J Med Microbiol 296:5–14

    Article  CAS  PubMed  Google Scholar 

  • Skurnik M, Pajunen M, Kiljunen S (2007) Biotechnological challenges of phage therapy. Biotechnol Lett 29:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Sozzi T, Maret R, Cerise L (1973) Isolation and some characteristics of 2 Micrococcus phages from Italian salami, type-Varzi. Arch Mikrobiol 92:313–320

    Article  CAS  PubMed  Google Scholar 

  • Sulakvelidze A, Morris JG Jr (2001) Bacteriophages as therapeutic agents. Ann Med 33:507–509

    Article  CAS  PubMed  Google Scholar 

  • Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers WC (2006) Phage and the early development of molecular biology. In: Calendar R (ed) The bacteriophages. Oxford University Press, New York

    Google Scholar 

  • Sunagar R, Patil SA, Chandrakanth RK (2010) Bacteriophage therapy for Staphylococcus aureus bacteremia in streptozotocin-induced diabetic mice. Res Microbiol 161:854–860

    Article  PubMed  Google Scholar 

  • Takemura-Uchiyama I, Uchiyama J, Osanai M, Morimoto N, Asagiri T et al (2014) Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice. Microbes Infect 16:512–517

    Article  CAS  PubMed  Google Scholar 

  • Tothova L, Celec P, Babickova J, Gajdosova J, Al-Alami H et al (2011) Phage therapy of Cronobacter-induced urinary tract infection in mice. Med Sci Monit 17:BR173–BR178

    Article  PubMed  PubMed Central  Google Scholar 

  • van Helvoort T (1992) Bacteriological and physiological research styles in the early controversy on the nature of the bacteriophage phenomenon. Med Hist 36:243–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitiello CL, Merril CR, Adhya S (2005) An amino acid substitution in a capsid protein enhances phage survival in mouse circulatory system more than a 1000-fold. Virus Res 114:101–103

    Article  CAS  PubMed  Google Scholar 

  • Volkova VV, Lu Z, Besser T, Grohn YT (2014) Modeling the infection dynamics of bacteriophages in enteric Escherichia coli: estimating the contribution of transduction to antimicrobial gene spread. Appl Environ Microbiol 80:4350–4362

    Article  PubMed  PubMed Central  Google Scholar 

  • Waller AS, Yamada T, Kristensen DM, Kultima JR, Sunagawa S et al (2014) Classification and quantification of bacteriophage taxa in human gut metagenomes. ISME J 8:1391–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe R, Matsumoto T, Sano G, Ishii Y, Tateda K et al (2007) Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother 51:446–452

    Article  CAS  PubMed  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  CAS  PubMed  Google Scholar 

  • Westwater C, Kasman LM, Schofield DA, Werner PA, Dolan JW et al (2003) Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob Agents Chemother 47:1301–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright A, Hawkins CH, Anggard EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34:349–357

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kraft BL, Pan Y, Wall SK, Saez AC et al (2010) Development of an anti-Salmonella phage cocktail with increased host range. Foodborne Pathog Dis 7:1415–1419

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Azeredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Melo, L.D.R., Oliveira, H., Santos, S.B., Sillankorva, S., Azeredo, J. (2017). Phages Against Infectious Diseases. In: Paterson, R., Lima, N. (eds) Bioprospecting. Topics in Biodiversity and Conservation, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-47935-4_12

Download citation

Publish with us

Policies and ethics