Skip to main content

Secondary Metabolites of Mine Waste Acidophilic Fungi

  • Chapter
  • First Online:
Book cover Bioprospecting

Part of the book series: Topics in Biodiversity and Conservation ((TOBC,volume 16))

Abstract

Microorganisms isolated from an acid mine waste lake have proven an unexpected source of novel, bioactive metabolites. Berkeley Pit Lake is part of the largest Superfund site in North America. Despite its low pH, high Eh, and high metal concentration, it harbors extremophilic microbes that have been grown in the laboratory in liquid culture using an array of physicochemical conditions. Bioassay-guided fractionation has directed the purification of small molecule inhibitors of enzymes associated with inflammation (caspase-1) and epithelial-mesenchymal transition (matrix-metalloproteinase-3, MMP-3). Caspase-1 plays an important role in chronic inflammation. It is activated upon binding to the inflammasome, a multiprotein complex that plays a key role in innate immunity. Activated caspase-1 in turn activates pro-inflammatory cytokines. Up-regulation of caspase-1 and concomitant chronic inflammation have been associated with leukemia, melanoma, glioblastoma, pancreatic cancers and breast cancer. MMP-3 promotes tumor cell invasion through the loss of cellular adhesion and promotion of epithelial-mesenchymal transition, which is associated with the metastatic spread of cancer. Inflammation and metastasis are interconnected and provide important targets for chemotherapy. Novel compounds have been tested by the National Cancer Institute-Developmental Therapeutics Program, Memorial Sloan Kettering Cancer Center and Eisai, Inc. for anti-proliferative activity against specific and established human cancer cell lines. In these studies, attention has been paid to the isolation and characterization of enzyme inhibitors as well as inactive analogues to facilitate assessment of structure/activity relationships. Compounds isolated using this methodology have demonstrated activity against specific cancer cell lines, and some of these compounds will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Cancer Society. Cancer Facts & Figures (2014) Atlanta: American Cancer Society, pp 17–18

    Google Scholar 

  • Barnes KA (2013) Extreme life. https://www.kevinabarnes.com/extreme-life. Accessed 10 Mar 2015

  • Boyer N, Morrison KC, Kim J, Hergenrother PJ, Movassaghi M (2013) Synthesis and anticancer activity of epipolythiodiketopiperazine alkaloids. Chem Sci 4(4):1646–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98(1):289–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona-Gutierrez D, Frohlich KU, Kroemer G, Madeo F (2010) Metacaspases are caspases. Doubt no more. Cell Death Differ 17:377–378

    Article  CAS  PubMed  Google Scholar 

  • Coffelt SB, de Visser KE (2014) Cancer: inflammation lights the way to metastasis. Nature 507:48–49

    Article  CAS  PubMed  Google Scholar 

  • Correia AL, Mori H, Chen EI, Schmitt FC, Bissell MJ (2013) The hemopexin domain of MMP3 is responsible for mammary epithelial invasion and morphogenesis through extracellular interaction with HSP90b. Genes Dev 27:805–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens LM, Werb Z (1996) Matrix metalloproteinases and the development of cancer. Chem Biol 3:895–904

    Article  CAS  PubMed  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    Article  CAS  PubMed  Google Scholar 

  • Crutzen PJ, Stoermer EF (2000) Global Change Newsletter 41:12–13

    Google Scholar 

  • Davis BK, Ting JP-Y (2010) NLRP3 has a sweet tooth. Nat Immunol 11:105–106

    Article  CAS  PubMed  Google Scholar 

  • Duaime TE (2006) Long term changes in the limnology and geochemistry of the Berkeley pit lake, Butte, Montana. Mine Water Environ 25:76–85

    Article  Google Scholar 

  • Dufour A, Sampson NS, Li J, Kuscu C et al (2011) Small-molecule anticancer compounds selectively target the hemopexin domain of matrix metalloproteinase-9. Cancer Res 71:4977–4988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elinav E, Nowarski R, Thaiss CA, Jin C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13:759–771

    Article  CAS  PubMed  Google Scholar 

  • Fraenkel GS (1959) The raison dʼetre of secondary plant substances. Science 129(3361):1466–1470

    Article  CAS  PubMed  Google Scholar 

  • Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10(3):241–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Albeniz X, Chan AT (2011) Aspirin for the prevention of colorectal cancer. Best Pract Res Clin Gastroenterol 25:461–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granot T, Milhas D, Carpentier S, Dagan A, Segui B, Gatt S, Levade T (2006) Caspase-dependent and -independent cell death of Jurkat human leukemia cells induced by novel synthetic ceramide analogs. Leukemia 20:392–399

    Article  CAS  PubMed  Google Scholar 

  • Harijith A, Ebenezer DL, Natarajan V (2014) Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol 5:352

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho BY, YM Wu, KJ Chang, TM Pan (2011) Dimerumic acid inhibits SW620 cell invasion by attenuating H2O2 -mediated MMP-7 expression via JNK/c-JUN and ERK/c-FOS activation in an AP-1-dependent manner. Int J Biol Sci 7(6):869–880

    Google Scholar 

  • Jiang CS, Guo YW (2011) Epipolythiodioxopiperazines from fungi: chemistry and bioactivities. Mini-Rev Med Chem 11(9):728–745

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Yuan RQ, Fuchs A, Yao Y, Joseph A, Schwall R, Schnitt SJ, Guida A, Hastings HM, Andres J, Turkel G, Polverini PJ, Goldberg ID, Rosen EM (1997) Expression of interleukin-1β in human breast carcinoma. Cancer 80:421–434

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Ozawa S, Miyamoto C, Maehata Y, Baba Y (2013) Acidic extracellular microenvironment and cancer. Cancer Cell Int 13:89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley MJ, Rose AY, Song K, Chen Y, Bradley JM, Rookhuizen D, Acott TS (2007) Synergism of TNF and IL-1 in the induction of matrix metalloproteinase-3 in trabecular meshwork. Invest Ophthalmol Vis Sci 48(6):2634–2643

    Article  PubMed  Google Scholar 

  • Kim HG, Shrestha B, Lim SY, Yoon DH, Chang WC, Shin DJ, Han SK, Park SM, Park JH, Park HI et al (2006) Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-κB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur J Pharmacol 545:192–199

    Article  CAS  PubMed  Google Scholar 

  • Kolb R, Liu GH, Janowski AM, Sutterwal FS, Zhang W (2014) Inflammasomes in cancer: a double-edged sword. Protein Cell 5(1):12–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Pan TM (2013) Dimerumic acid, a novel antioxidant identified from Monascus-fermented products exerts chemoprotective effects: mini review. J Funct Foods 5(1):2–9

    Article  CAS  Google Scholar 

  • Lee HJ, Lee JH, Hwang BY, Kim HS, Lee JJ (2001) Antiangiogenic activities of gliotoxin and its methylthioderivative, fungal metabolites. Arch Pharm Res 24:397–401

    Article  CAS  PubMed  Google Scholar 

  • Liggetta JL, Zhang X, Eling TE, Baeka SJ (2014) Anti-tumor activity of non-steroidal anti-inflammatory drugs: cyclooxygenase-independent targets. Cancer Lett 346(2):217–224

    Article  Google Scholar 

  • Liou G-Y, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44(5):1–20

    Article  Google Scholar 

  • Lu H, Ouyang W, Huang C (2006) Inflammation, a key event in cancer development. Mol Cancer Res 4(4):221–223

    Article  PubMed  Google Scholar 

  • MacElroy RD (1974) Some comments on the evolution of extremophiles. Biosystems 6:4–75

    Article  Google Scholar 

  • Mannello F, Tonti G, Papa S (2005) Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr Cancer Drug Targets 5:285–298

    Article  CAS  PubMed  Google Scholar 

  • Martinon F (2010) Signaling by ROS drives inflammasome activation. Eur J Immunol 40(3):616–619

    Article  CAS  PubMed  Google Scholar 

  • Mason JW, Kidd JG (1951) Effects of gliotoxin and other sulfur-containing compounds on tumor cells in vitro. J Immunol 66:99–106

    CAS  PubMed  Google Scholar 

  • Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J (2007) A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immun 8:497–503

    Article  CAS  Google Scholar 

  • McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5:a008656

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mousavi SA, Robson GD (2003) Entry into the stationary phase is associated with a rapid loss of viability and an apoptotic-like phenotype in the opportunistic pathogen Aspergillus fumigates. Fungal Genet Biol 39:221–229

    Article  CAS  PubMed  Google Scholar 

  • Muerkoster SS, Lust J, Arlt A, Hasler R, Witt M, Sebens T, Schreiber S, Folsch UR, Schafer H (2006) Acquired chemoresistance in pancreatic carcinoma cells: induced secretion of IL-1β and NO lead to inactivation of caspases. Oncogene 25:3973–3981

    Article  PubMed  Google Scholar 

  • Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sci Am 262(4):56–61

    Article  CAS  PubMed  Google Scholar 

  • Nagase H (1996) In: Hooper NM (ed) Zinc metalloproteases in health and disease. Taylor and Francis, London, pp. 153–204

    Google Scholar 

  • Noh EM, Kim JS, Hur H, Park BH, Song EK, Han MK, Kwon KB, Yoo WH, Shim IK, Lee SJ, Youn HJ, Lee YR (2009) Cordycepin inhibits IL-1b-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts. Rheumatology 48:45–48

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom DK, Southam G (1997) Geomicrobiology of sulfide mineral oxidation. In: JF Banfield, KH Nealson (eds) Reviews in mineralogy: Miner Soc Am 35:361-390

    Google Scholar 

  • Okamoto M, Liu W, Luo Y, Tanaka A, Cai X, Norris DA, Dinarello C, Fujita M (2010a) Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1β. J Biol Chem 285:6477–6488

    Article  CAS  PubMed  Google Scholar 

  • Okamoto M, Liu W, Luo Y, Tanaka A, Cai X, Norris DA, Dinarello C, Fujita M (2010b) Constitutively active inflammasome in human melanoma cells mediating auto-inflammation via caspase-1 processing and secretion of interleukin-1β. J Biol Chem 285:6477–6488

    Article  CAS  PubMed  Google Scholar 

  • Orlikova B, Legrand N, Panning J, Dicato M, Diederich M (2014) Anti-inflammatory and anticancer drugs from nature. Cancer Treat Res 159:123–143

    Article  CAS  PubMed  Google Scholar 

  • Pan XQ, Harday J (2007) Electromicroscopic observations on gliotoxin-induced apoptosis of cancer cells in culture and human cancer xenografts in transplanted SCID mice. In Vivo 21:259–266

    PubMed  Google Scholar 

  • Paugh BS, Bryan L, Paugh SW, Wilczynska KM, Alvarez SM, Singh SK, Kapitonov D, Rokita H, Wright S, Griswold-Prenner I, Milstien S, Spiegel S, Kordula T (2009) Interleukin-1 regulates the expression of sphingosine kinase 1 in glioblastoma cells. J Biol Chem 284:3408–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radisky DC, Levy DD, Littlepage LE, Hong L, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saiki RK et al (1988) Primer-directed enzymatic amplification of DNA with a thermo-stable DNA polymerase. Science 239(4839):487–491

    Article  CAS  PubMed  Google Scholar 

  • Sanders TJ, McCarthy NE, Giles EM, Davidson KL, Haltalli ML, Hazell S, Lindsay JO, Stagg AJ (2014) Increased production of retinoic acid by intestinal macrophages contributes to their inflammatory phenotype in patients with Crohn’s disease. Gastroenterology 146(5):1278–1288

    Article  CAS  PubMed  Google Scholar 

  • Schimmel TG, Coffman AD, Parsons SJ (1998) Effect of butyrolactone I on the producing fungus, Aspergillus terreus. Appl Environ Microbiol 64:3703–3712

    Google Scholar 

  • Schlosser S, Gansauge F, Ramadani M, Beger H-G, Gansauge S (2001) Inhibition of caspase-1 induces cell death in pancreatic carcinoma cells and potentially modulates expression levels of bcl-2 family proteins. FEBS Lett 491:104–108

    Article  CAS  PubMed  Google Scholar 

  • Smith DG, Guillemin GJ, Pemberton L, Kerr S, Nath A, Smythe GA, Brew BJ (2001) Quinolinic acid is produced by macrophages stimulated by platelet activating factor, Nef and Tat. J Neurovirol 7(1):56–60

    Article  CAS  PubMed  Google Scholar 

  • Steenport M, Khan KM, Du B, Barnhard SE, Dannenberg AJ, Falcone DJ (2009) Matrix metalloproteinase (MMP)-1 and MMP-3 induce macrophage MMP-9: evidence for the role of TNF-alpha and cyclooxygenase-2. J Immunol 183(12):8119–8127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier J-P, Gray JW, Pinkel D, Bissell MJ (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98:137–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stetler-Steveson WG, Hewitt R, Corcoran M (1996) Matrix metalloproteinases and tumour invasion: from correlation and causality to the clinic. Semin Cancer Biol 7:147–154

    Article  Google Scholar 

  • Stierle AA, Stierle DB (2005) Bioprospecting in the Berkeley pit: bioactive metabolites from acid mine waste extremophiles. In: Atta-Ur-Rahman (ed) Bioactive natural products, vol 32. Elsevier Science, Amsterdam, pp 1123-1175

    Google Scholar 

  • Stierle A, Stierle D (2013) Bioprospecting in the Berkeley pit: the use of signal transduction enzyme inhibition assays to isolate bioactive secondary metabolites from the extremophilic fungi of an acid mine waste lake. In: Atta-Ur-Rahman (ed) Bioactive natural products, vol 39. Elsevier Science, Amsterdam, pp 1-47

    Google Scholar 

  • Stierle AA, Stierle DB (2014) Bioactive secondary metabolites of acid mine waste extremophiles. Nat Prod Commun 9(7):1037–1044

    CAS  PubMed  Google Scholar 

  • Stierle AA, Stierle DB (2015) Azaphilones from the acid mine waste extremophile Pleurostomophora sp. J Nat Prod. J Nat Prod 78:2917–2923

    Google Scholar 

  • Stierle DB, Stierle AA, Hobbs JD, Stokken J, Clardy J (2004) Berkeleydione and berkeleytrione, new bioactive metabolites from an acid mine organism. Org Lett 6:1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Stierle AA, Stierle DB, Kelly K (2006) Berkelic acid, a novel spiroketal with highly specific anti-tumor activity from an acid-mine waste fungal extremophile. J Org Chem 71:5357–5360

    Article  CAS  PubMed  Google Scholar 

  • Stierle DB, Stierle AA, Patacini B (2007) The berkeleyacetals, three meroterpenes from a deep water acid mine waste Penicillium. J Nat Prod 70:1820–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle AA, Stierle DB, Patacini B (2008) The berkeleyamides: four new amides from Penicillium rubrum, a deep water acid mine waste fungus. J Nat Prod 71:856–860

    Article  CAS  PubMed  Google Scholar 

  • Stierle D, Stierle A, Patacini B, McIntyre K, Girtsman T, Bolstad E (2011) Berkeleyones and related meroterpenes from a deep water acid mine waste fungus that inhibit the production of interleukin 1-β from induced inflammasomes. J Nat Prod 74:2273–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle D, Stierle A, Girtsman T, McIntyre K, Nichols J (2012a) Caspase-1 and -3 inhibiting drimane sesquiterpenoids from the extremophilic fungus, Penicillium solitum. J Nat Prod 75:262–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle A, Stierle D, Girtsman T (2012b) Caspase-1 inhibitors from an extremophilic fungus that target specific leukemia cell lines. J Nat Prod 75:344–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle AA, Stierle DB, Mitman GG, Snyder S, Antczak SC, Djaballah H (2014) Phomopsolides and related compounds from the alga-associated fungus, Penicillium clavigerum. Nat Prod Commun 9(1):87–90

    CAS  PubMed  Google Scholar 

  • Sugui JA, Pardo J, Chang YC, Zarember KA, Nardone G, Galvez EM, Müllbacher A, Gallin JI, Simon MM, Kwon-Chung KJ (2007) Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot Cell 6(9):1562–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiery JP, Acioque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890

    Article  CAS  PubMed  Google Scholar 

  • Toyokuni S (2009) Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci 100(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Tschopp J, Schroeder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215

    Article  CAS  PubMed  Google Scholar 

  • Tsiatsiani L, Breusegem F, Gallois P, Zaviolov A, Lam E, Bozhkov PV (2011) Metacaspases. Cell Death Differ 18:1279–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuzaki M, Guyton G, Garrett W, Archambault JM, Herzog W et al (2003) IL-1β induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1β and IL-6 in human tendon cells. J Orthop Res 21(2):256–264

    Article  CAS  PubMed  Google Scholar 

  • Understanding Autoimmune Diseases (1998), NIH Publication Number 98-4273, May 1998

    Google Scholar 

  • Vandooren J, Van den Steen PE, Opdenakker G (2013) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol 48(3):222–272

    Article  CAS  PubMed  Google Scholar 

  • Vigushin DM, Mirsaidi N, Brooke G, Sun C, Pace P, Luman L, Mood CJ, Coombes RC (2004) Gliotoxin is a dual inhibitor of farnesyltransferase and geranyltransferase I with antitumor activity against breast cancer in vitro. Med Oncol 216:21–30

    Article  Google Scholar 

  • Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, Dinarello CA, Apte RN (2003a) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A 100:264–2650

    Article  Google Scholar 

  • Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, Dinarello CA, Apte RN (2003b) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A 100:2640–2650

    Article  Google Scholar 

  • Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Tumoren (On metabolism of tumors). Biochem Z 152:319–344

    Google Scholar 

  • Wolf JC, Mirocha CJ (1973) Regulation of sexual reproduction in Gibberella zeae (Fusarium roseum ‘Graminearum’) by F-2 (zearalenone). Can J Microbiol 19:725–734

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zhou B (2009) Inflammation: a driving force speeds cancer metastasis. Cell Cycle 8(20):3267–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabu M, Shime H, Hara H, Saito T, Matsumoto M, Seya T, Akazawa T, Inoue N (2011) IL-23-dependent and -independent enhancement pathways of IL-17A production by lactic acid. Int Immunol 23(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Zucker S, Cao J, Chen W-T (2000) Critical appraisal of the use of matrix metallo-proteinase inhibitors in cancer treatment. Oncogene 19:6642–6650

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea A. Stierle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stierle, A.A., Stierle, D.B. (2017). Secondary Metabolites of Mine Waste Acidophilic Fungi. In: Paterson, R., Lima, N. (eds) Bioprospecting. Topics in Biodiversity and Conservation, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-47935-4_10

Download citation

Publish with us

Policies and ethics