Skip to main content

Insect-Pests in Dryland Agriculture and their Integrated Management

  • Chapter
  • First Online:
  • 1486 Accesses

Abstract

More than 700 million people reside in arid and semi-arid regions, which comprise about 40 % of the world’s land with about 60 % of this area in developing countries. The United Nations estimated that the world population would be 9.7 billion by 2050. Therefore, enhancing crop productivity in agroecosystems especially in drylands is essential to feed the future population. Insects are dominant animals on Earth with about one million described species. More than a thousand species of insect pests adversely affect food crops in dryland agroecosystems. They can cause between 50 and 100 % of pre- and post-harvest losses. The control of insect pests in dryland agroecosystems is challenging due to adaptations (morphological, physiological, behavioral and ecological) to survive in those conditions. Therefore, a sustainable management approach is necessary for sustainable plant protection and food security in dryland cropping systems. If applied efficiently and strategically, integrated pest management has the potential to solve pest problems while minimizing risks to people and the environment. The main components of integrated pest management for sustainable agriculture and food security in dryland agriculture are the identification of pest problems and their abiotic/biotic limiting factors, establishment of economic decision levels of pest species, efficient and advanced pest monitoring and forecasting systems, biotechnologically-based host plant resistance approaches, revolutionary crop rotation systems, ecological engineering of dryland landscape systems, introduction, manipulation and conservation of biological control, adoption of precision production, protection technologies, and the implementation of biorational and other soft, ecofriendly innovative approaches. In dryland cropping systems, multidimensional and multidisciplinary research integrating simple and inexpensive scientific technologies should be executed to tackle/solve prevailing and emerging plant production and protection issues on a sustainable basis. A better understanding of the processes and appropriate insect pest management implementation to reduce crop yield losses will provide long-term sustainable production systems in dryland areas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahern RG, Brewer MJ (2002) Effect of different wheat production systems on the presence of two parasitoids (Hymenoptera: Aphelinidae: Braconidae) of the Russian wheat aphid in the North America Great Plains. Agri Ecosyst Environ 92:201–210

    Article  Google Scholar 

  • Alam MA (2010) Encyclopaedia of applied entomology. Anmol Publications (Pvt.) Ltd. New Delhi

    Google Scholar 

  • Altieri MA, Gurr GM, Wratten SD (2004) Genetic engineering and ecological engineering: a clash of paradigms or scope for synergy? In: Gurr GM, Wratten SD, Altieri MA (eds) Ecological engineering for pest management. CSIRO Publishing, Collingwood, Australia

    Google Scholar 

  • Altstein M, Ben-Aziz O, Schefler I, Zeltser I, Gilon C (2000) Advances in the application of neuropeptides in insect control. Crop Prot 19:547–555

    Article  CAS  Google Scholar 

  • Anonymous (1971) Hessian fly, Mayetiola destructor. In: Insects. N.Z. Deptt Agr Report pp 1–3

    Google Scholar 

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Ga´ndara J, Mejuto J, L. G´a-R´o (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260

    Google Scholar 

  • Arizaga S, Ezcurra E, Peters E, de Arellano FR, Vega E (2000) Pollination ecology of Agave Macroacantha (Agavaceae) in a Mexican tropical desert. ii. The role of pollinators. Am J Bot 87:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Arn H, Guerin PM, Buser HR, Rauscher S, Mani E (1985) Sex pheromone blend of the codling moth, Cydia pomonella: evidence for a behavioral role of dodecan-1-ol. Experientia 41:1482–1484

    Article  CAS  Google Scholar 

  • Arnon I (Eds) (1992) Insects and other plant pests. In: Developments in agricultural and managed-forest ecology agriculture in dry lands, principles and practices. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Asin L, Pons X (2001) Effect of high temperature on the growth and reproduction of corn aphids (Homoptera: Aphididae) and implications for their population dynamics on the northeastern Iberian peninsula. Environ Entomol 30:1127–1134

    Article  Google Scholar 

  • Athukorala W, Wilson C, Robinson T (2012) Determinants of health costs due to farmers’ exposure to pesticides: an empirical analysis. Agri Econ 63:158–174

    Article  Google Scholar 

  • Ayal Y, Polis GA, Lubin Y, Goldberg DE (2005) How can high animal biodiversity be supported in low productivity deserts? The role of macrodetrivory and physiognomy. In: Shachak M, Wade R (eds) Biodiversity in drylands. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Babaei MR, Barari H, Kara K (2009) Weight differences of male and female pupae of gypsy moth (Lymantria dispar) and host-sex preference by two parasitoid species Lymantrichneumon disparis and Exorista larvarum. Pak Biol Sci 12:443–446

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol 8:1–16

    Article  Google Scholar 

  • Baur M, Boethel D (2003) Effect of Bt-cotton expressing Cry1A (c) on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. Biol Control 26:325–332

    Article  CAS  Google Scholar 

  • Benbrook CM (2012) Impacts of genetically engineered crops on pesticide use in the US–the first sixteen years. Environ Sci Eur 24:2190–4715

    Article  CAS  Google Scholar 

  • Bentz JA, Reeves J, Barbosa P, Francis B (1996) The effect of nitrogen fertilizer applied to Euphorbia pulcherrima on the parasitization of Bemisia argentifolii by the parasitoid Encarsia formosa. Entomol Exp appl 78:105–110

    Article  Google Scholar 

  • Beroza M, Green N, Gertler SI (1961) New attractants for the Mediterranean fruit fly in. J Acricul Food Chem 9:361–365

    Article  CAS  Google Scholar 

  • Birch LC (1948) The intrinsic rate of natural increase of an insect population. Anim Ecol 17:15–26

    Article  Google Scholar 

  • Boller EF (1992) The role of integrated pest management in integrated production of viticulture in Europe. Proceedings of the British Crop Protection Conference, Pests and Diseases, Brighton pp 499–506

    Google Scholar 

  • Booij CH, Noorlander J (1992) Farming systems and insect predators. Agri Ecosyst Environ 40:125–135

    Article  Google Scholar 

  • Bowers WS, Thompson MJ, Uebel EC (1965) Juvenile and gonadotropic hormone activity of 10, 11-epoxyfarnesoic acid methyl ester. Life Sci 4:2323–2331

    Article  CAS  PubMed  Google Scholar 

  • Brewer M, Elliott NC (2004) Biological control of cereal aphids in North America and mediating effects of host plant and habitat manipulations. Ann Rev Entomol 49:219–242

    Article  CAS  Google Scholar 

  • Butani DK (1979) Insects and fruits. Periodical expert book agency, D-42, Vivek Vihar, Delhi, India. pp 415

    Google Scholar 

  • Butler LI, McDonough LM (1979) Insect sex pheromones: evaporation rates of acetates from natural rubber septa. Chem Ecol 5:825–837

    Article  CAS  Google Scholar 

  • Butler LI, McDonough LM (1981) Insect sex pheromones: evaporation rates of alcohols and acetates from natural rubber septa. Chem Ecol 7:627–633

    Article  CAS  Google Scholar 

  • Buurma J (2008) Stakeholder involvement in crop protection policy planning in The Netherlands. ENDURE–RA3.5/SA4.5 Working Paper. LEI Wageningen UR, The Hague, The Netherlands

    Google Scholar 

  • Cagan L, Tancik J, Hassan SA (1998) Natural parasitism of European corn borer eggs, Ostrinia nubilalis Hbn. (Lepidoptera: Pyralidae) by Trichogramma in Slovakia-need for field releases of the natural enemy. Appl Entomol 122:315–318

    Article  Google Scholar 

  • Carrière Y, Crowder DW, Tabashnik BE (2010) Evolutionary ecology of insect adaptation to Bt crops. Evol Appl 3:561–573

    Article  PubMed  PubMed Central  Google Scholar 

  • Cartwright B, Edelson JV, Chambers C (1989) Composite action thresholds for the control of Lepidopterous pests on fresh market cabbage in the lower Rio Grande Valley of Texas. Econ Entomol 80:175–181

    Article  Google Scholar 

  • Cattaneo MG, Yafuso C, Schmidt C, Huang CY, Rahman M, Olson C, Ellers-Kirk C, Orr BJ, Marsh SE, Antilla L, Dutilleul P, Carrière Y (2006) Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc Natl Acad Sci USA 103:7571–7576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CGIAR (1997) Consultative Group on International Agricultural Research. World’s dryland farmers need new agricultural technology – “Green Revolution” never reached them. CGIAR Newsletter 4(4), http://www.worldbank.org/html/cgiar/press/dryland.html

  • Chakravarthy N, Gautam R (2002) Forewarning mustard aphid, NATP Project Report. Division of Agricultural Physics, IARI, New Delhi, India

    Google Scholar 

  • Chapman RF (2013) The insect: structure and function, 5th edn. Cambridge University Press, New York, USA

    Google Scholar 

  • Chapman TB, Veblen TT, Schoennagel T (2012) Spatio temporal patterns of mountain pine beetle activity in the southern Rocky Mountains. Ecology 93:2175–2185

    Article  PubMed  Google Scholar 

  • Cloudsley-Thompson JL (1975) Adaptations of Arthropoda to arid environments. Ann Rev Entomol 20:261–283

    Article  CAS  Google Scholar 

  • Clough Y, Kruess A, Tschamtke T (2007) Local landscape factors in differently managed arable fields affect the insect herbivore community of a non-crop plant species. Appl Ecol 44:22–28

    Article  Google Scholar 

  • Cockbain A (1961) Low temperature thresholds for flight in Aphis fabae Scop. Entomol Exp Appl 4:211–219

    Article  Google Scholar 

  • Collins JK, Cuperus GW, Cartwright B, Stark JA, Ebro LL (1992) Consumer attitudes on production systems for fresh produce. Sustain Agri 3:67–77

    Google Scholar 

  • Collins KL, Boatman ND, Wilcox A, Holland JM (2003) A 5-year comparison of overwintering polyphagous predator densities within a beetle bank and two conventional hedgebanks. Ann Appl Biol 143:63–71

    Article  Google Scholar 

  • Collins W, Colman R, Haywood J, Manning RR, Mote P (2007) The physical science behind climate change. Sci Am 297:64–73

    Article  PubMed  Google Scholar 

  • Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment. Plant J 33:19–46

    Article  PubMed  Google Scholar 

  • Cork A, Beevor PS, Hall DR, Nesbitt BF, Arida GS, Mochida O (1985) Components of the female sex pheromone of the yellow stem borer, Scirpophaga incertulas. Entomologia Experimentalis et Applicata 37(2):149–155

    Article  CAS  Google Scholar 

  • Costa-Leonardo AM, Casarin FE, Lima JT (2009) Chemical communication in Isoptera. Neotrop Entomol 38(1):1–6

    Article  Google Scholar 

  • Crane E, Walker P (1984) Pollination directory for world crops. International bee research association

    Google Scholar 

  • Croft BA (1990) Arthropod biological control agents and pesticides. Wiley, New York, USA

    Google Scholar 

  • Cunningham SA, Evans TA, Arthur AD, Schellhorn NA, Bianchi FJ (2010) What can insects do to help the farm? Soil improvement, pollination and pest control. In: 25th Annual conference proceedings 28–29 July 2010-Dubbo NSW “Adapting mixed farms to future environments”. pp 37–41

    Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (2014) Worldwide pesticide use. In: A D, Bose R, Kumar A, Mozumdar S (eds) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, New York, USA

    Chapter  Google Scholar 

  • DeBach P, Rosen D (eds) (1991) Biological control by natural enemies. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • Denno RF, Roderick GK, Olmstead KL, Dobel HG (1991) Density-related migration in planthoppers (Homoptera: Delphacidae). The role of habitat persistence. Am Nat 138:1513–1541

    Article  Google Scholar 

  • Dhaliwal GS, Arora R (2003) Principles of insect pest management, 2nd edn. Kalyani Publishers, Ludhiana, India

    Google Scholar 

  • Dhaliwal GS, Koul O (2007) Biopesticides and pest management: conventional and biotechnological approaches. Kalyani Publishers, Ludhiana, India

    Google Scholar 

  • Dhaliwal GS, Singh R, Chhillar BS (2006) Essentials of agricultural entomology. Kalyani Publishers, Ludhiana, India

    Google Scholar 

  • Dhillon M, Sharma H (2007) Effect of storage temperature and duration on viability of eggs of Helicoverpa armigera (Lepidoptera: Noctuidae). Bull Entomol Res 97:55–59

    Article  CAS  PubMed  Google Scholar 

  • Dhillon MK, Sharma HC (2009) Temperature influences the performance and effectiveness of field and laboratory strains of the ichneumonid parasitoid, Campoletis chlorideae. Bio Contr 54:743–750

    Google Scholar 

  • Dixon AFG (2000) Insect predator-prey dynamics: ladybird beetles and biological control: Cambridge University Press, New York, USA

    Google Scholar 

  • Djerassi C, Shih-Coleman C, Diekman J (1974) Insect control of the future: operational and policy aspects. Science 186:596–607

    Article  CAS  PubMed  Google Scholar 

  • Doutt RL, Nakata J (1973) The Rubus leafhopper and its egg parasitoid: an endemic biotic system useful in grape-pest management. Environ Entomol 2:381–386

    Article  Google Scholar 

  • Eggleton P, Belshaw R (1992) Insect parasitoids: an evolutionary overview. Philos Trans R Soc London B Biol Sci 337(1279):1–20

    Article  Google Scholar 

  • Elliott NC, Kieckhefer RT, Beck DA (2002) Effect of aphids and the surrounding landscape on abundance of coccinellids in cornfields. Biol Control 24:214–220

    Article  Google Scholar 

  • El-Sayed AM, Mitchell VJ, Manning LA, Suckling DM (2011) New sex pheromone blend for the light brown apple moth, Epiphyas postvittana. Chem Ecol 37(6):640–646

    Article  CAS  Google Scholar 

  • Fujisaka S, Kirk G, Litsinger JA, Moody K, Hosen N, Yusef A, Nurdin F, Naim T, Artati F, Aziz A (1991) Wild pigs, poor soils, and upland rice: a diagnostic survey of Sitiung, Sumatra, Indonesia. IRRI Research Paper Series No. 155. p 9

    Google Scholar 

  • Gerling D, Sinai P (1994) Buprofezin effects on two parasitoid species of whitefly (Homoptera: Aleyrodidae). Econ Entomol 87:842–846

    Article  CAS  Google Scholar 

  • Getanjaly RVL, Sharma P, Kushwaha R (2015) Beneficial Insects and their Value to Agriculture. Res Agri Forest Sci 3(5):25–30

    Google Scholar 

  • Giles KL, Jones DB, Royer TA, Elliott NC, Kindler SD (2003) Development of a sampling plan in winter wheat that estimates cereal aphid parasitism levels and predicts population suppression. J Econ Entomol 96:975–982

    Article  PubMed  Google Scholar 

  • Glamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126:347–363

    Article  Google Scholar 

  • Gogi MD, Sarfraz RM, Dosdall LM, Arif MJ, Keddie AB, Ashfaq M (2006) Effectiveness of two insect growth regulators against Bemisia tabaci (Gennadius) (Homoptera:Aleyrodidae) and Helicoverpa armegera (Hubner) (Lepidoptera: Noctuidae) and their impact on population densities of arthropod predators in cotton in Pakistan. Pest Manag Sci 62:982–990

    Article  CAS  PubMed  Google Scholar 

  • Greenslade PJM (1983) Adversity selection and the habitat templet. Am Nat 122:352–365

    Article  Google Scholar 

  • Griggs DJ, Noguer M (2002) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Weather 57:267–269

    Article  Google Scholar 

  • Grist DH, Lever RJAW (1969) Pests of rice. Longmans, London, UK

    Google Scholar 

  • Gu H, Edwards OR, Hardy AT, Fitt GP (2008) Host plant resistance in grain crops and prospects for invertebrate pest management in Australia: an overview. Aust Exp Agri 48:1543–1548

    Article  Google Scholar 

  • Gurr GM, van Emden HF, Wratten SD (1998) Habitat manipulation and natural enemy efficiency: implication for the control of pests. In: Barbosa P (ed) Conservation biological control. Academic Press, San Diego

    Google Scholar 

  • Gurr GM, Wratten SD, Altieri MA (2004) Ecological engineering for pest management: advances in habitat manipulation for arthropods. CSIRO, Collingwood, Australia

    Google Scholar 

  • Hamilton JG, Dermody O, Aldea M, Zangerl AR, Rogers A, Berenbaum MR, Delucia EH (2005) Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environ Entomol 34:479–485

    Article  Google Scholar 

  • Hardy JE (1938) Plutella maculipennis Curt., its natural and biological control in England. Bull Entomol Res 29:343–372

    Article  Google Scholar 

  • Harrington R, Burgess AL, Taylor MS, Foster GN, Morrison S, Ward L, Tones SJ, Rogers R, Barker I, Walters KFA, Morgan D (1998) Spread of BYDV-DESSAC module: proceedings of the 6th HGCA R&D conference on cereals and oilseeds. Home Grown Cereals Authority, Cambridge

    Google Scholar 

  • Harwood JD, Phillips SW, Lello J, Sunderland KD, Glen DM, Bruford MW, Harper GL, Symondson WOC (2009) Invertebrate biodiversity affects predator fitness and hence potential to control pests in crops. Biol Control 51:499–506

    Article  Google Scholar 

  • Hedenström E, Edlund H, Wassgren AB, Bergström G, Anderbrant O, Ostrand F, Sierpinski A, Auger-Rozenberg MA, Herz A, Heitland W, Varama M (2006) Sex pheromone of the pine sawfly, Gilpinia pallida: chemical identification, synthesis, and biological activity. Chem Ecol 32:2525–2541

    Article  CAS  Google Scholar 

  • Heitz JR, Downum KR (1987) Light activated pesticides. Am Chem Soc Symp Ser 339:1–340

    CAS  Google Scholar 

  • Heong KL, Song YH, Pimsamarn S, Zhang R, Bae SD (1995) Global warming and rice arthropod communities. In: Peng S, Ingram KT, Neue HU, Ziska LH (eds) Climate change and rice. International Rice Research Institute/Springer, Berlin/Manila

    Google Scholar 

  • Heong KL, Escalada MM, Huan NH, Ky-Ba VH, Quynhm PV, Thiet LV, Chien HV (2008) Entertainment-education and rice pest management: a radio soap opera in Vietnam. Crop Prot 27:1392–1397

    Article  Google Scholar 

  • Herbert AK (2010) The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot 63:101–111

    Google Scholar 

  • Heuskin S, Verheggen FJ, Haubruge E, Wathelet JP, Lognay G (2011) The use of semiochemical slow-release devices in integrated pest management strategies. Biotechnol Agron Soc Environ 25:459–470

    Google Scholar 

  • Hill DS (1987) Agricultural insect pests of temperate regions and their control. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hillocks RJ (2009) GM cotton for Africa. Outlook Agric 38:311–316

    Article  Google Scholar 

  • Holtzer TO, Anderson RL, McMullen MP, Peairs FB (1996) Integrated pest management of insects, plant pathogens and weeds in dryland cropping systems of the Great Plains. J Prod Agric 9:200–208

    Article  Google Scholar 

  • Horne PA, Page J (2008) IPM for crops and pastures. CSIRO Landlinks Press, Melbourne, Australia

    Google Scholar 

  • Horowitz AR, Ishaaya I (2004) Biorational insecticides mechanisms, selectivity and importance in pest management programs. New York, USA. pp 1–28

    Google Scholar 

  • Hoseini S, Pourmirza A, Ebadollahi A, Jahromi MG (2012) Impacts of two conventional insecticides on different stages of Encarsia inaron Walker parasitizing the whitefly, Trialeurodes vaporariorum Westwood under greenhouse condition. Arch Phytopathol Plant Prot 45:268–275

    Article  CAS  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson C (eds) (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hsu JC, Feng HT (2006) Development of resistance to spinosad in oriental fruit fly (Diptera: Tephritidae) in laboratory selection and cross-resistance. Econ Entomol 99:931–936

    Article  CAS  Google Scholar 

  • Huberty AF, Denno RF (2004) Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85:1383–1398

    Article  Google Scholar 

  • Imms AD (1964) Outlines of Entomology (5th eds). Methuen London UK

    Google Scholar 

  • Irshad M (2001) Aphids and their biological control in Pakistan. Pak Biol Sci 4:537–541

    Article  Google Scholar 

  • Ishaaya I (2001) Biochemical processes related to insecticide action: an overview. In: Ishaaya I (ed) Biochemical sites of insecticide action and resistance. Springer, Berlin/Heidelberg/New York

    Chapter  Google Scholar 

  • Izhaki I, Walton PB, Safriel UN (1991) Seed shadows generated by frugivorous birds in an Eastern Mediterranean scrub. Ecology 79:575–590

    Article  Google Scholar 

  • Webster JA (1995) Economic Impact of the Greenbug in the Western United States: 1992–1993. Volume Publication No. 155, Great Plains Agricultural Council, Stillwater, Oklahoma.

    Google Scholar 

  • Jackson DM, Farnham M, Simmons A, Van Giessen W, Elsey K (2000) Effects of planting pattern of collards on resistance to whiteflies (Homoptera: Aleyrodidae) and on parasitoid abundance. Econ entomol 93:1227–1236

    Article  CAS  Google Scholar 

  • Jacobson M (1969) Sex pheromone of the pink bollworm moth: biological masking by its geometrical isomer. Science 163:190–191

    Article  CAS  PubMed  Google Scholar 

  • Jan MT, Abbas N, Shad SA, Saleem MA (2015) Resistance to organophosphate, pyrethroid and biorational insecticides in populations of spotted bollworm, Earias vittella (Fabricius)(Lepidoptera: Noctuidae), in Pakistan. Crop Protect 78:247–252

    Article  CAS  Google Scholar 

  • Jha LK (2010) Applied agricultural entomology. New Central Book Agency (pvt.) Ltd., Kolkata/Pune/Delhi, India

    Google Scholar 

  • Jin L, Zhang H, Lu Y, Yang Y, Wu K, Tabashnik BE, Wu Y (2015) Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nat Biotechnol 33:169–174

    Article  CAS  PubMed  Google Scholar 

  • Johansen BE (2002) The global warming desk reference. Greenwood Press, Westport

    Google Scholar 

  • John B, Darryl H, Greg P (2007) Hort Guard TM Initiative AGWEST Spiraling Whitefly Aleurodicus Dispersus Exotic threat to Western Australia. Availabale at (www.agric.wa.gov.au/objtwr/imported_assets/.../pw/.../fs01800.pdf)

  • Jones C (1999) Cropping native pasture and conserving biodiversity: a potential technique. In: Barlow T, Thorburn R (eds) Balancing conservation and production in grassy landscapes: proceedings of the Bushcare grassy landscapes conference. Environment Australia: Biodiversity Group, Clare

    Google Scholar 

  • Jonsson M, Wratten SD, Landis DA, Gurr GM (2008) Recent advances in conservation biological control of arthropods by arthropods. Biol Control 45:172–175

    Article  Google Scholar 

  • Jönsson A, Appelberg G, Harding S, Bärring L (2009) Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Global Change Biol 15:486–499

    Article  Google Scholar 

  • Joshi SR (2006) Biopesticides: a biotechnological approach. New Age International (pvt.) Ltd. Publishers, New Delhi, India

    Google Scholar 

  • Karl TR, Trenbeth KE (2003) Modern global climate change. Science 302:1719–1723

    Article  CAS  PubMed  Google Scholar 

  • Keenan SP, Giles KL, Elliott NC, Royer TA, Porter DR, Burgener PA, Christian DA (2007a) Grower perspectives on areawide wheat integrated pest management in the southern US great plains. In: Koul O, GV C (eds) Ecologically based integrated pest management. CAB International, Vallingford

    Google Scholar 

  • Keenan SP, Giles KL, Burgener PA, Elliott NC (2007b) Collaborating with wheat growers in demonstrating areawide integrated pest management. J Ext (http://www.joe.org/joe/2007february/a7.shtml)

  • Kelsey KD, Mariger SC (2002) A survey-based model for setting research, education, and extension priorities at the Land–grant University – a case study of Oklahoma wheat producers: final report. Agricultural Extension, Communications, and 4 -H Youth Development, Oklahoma State University, Stillwater, USA

    Google Scholar 

  • Khan HAA, Akram W, Shehzad K, Shaalan EA (2011) First report of field evolved resistance to agrochemicals in dengue mosquito, Aedes albopictus (Diptera: Culicidae), from Pakistan. Parasit Vectors 4:146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieckhefer RW, Kantack BH (1988) Yield losses in winter grains caused by cereal aphids (Homoptera: Aphididae) in South Dakota. J Econ Entomol 81:317–321

    Article  Google Scholar 

  • Kindler SD, Elliott NC, Giles KL, Royer TA, Fuentes-Grandaos R, Tao F (2002) Effect of greenbug (Homoptera: Aphididae) on yield loss of winter wheat. J Econ Entomol 95:89–95

    Article  CAS  PubMed  Google Scholar 

  • Kindler SD, Elliott NC, Giles KL, Royer TA (2003) Economic injury levels for the greenbug, Schizaphis graminum, in winter wheat. Southwestern Entomol 28:163–166

    Google Scholar 

  • Knipling EF (1979) The basic principles of insect population suppression and management, Agriculture handbook No. 512. US Government Printing Office, Department of Agriculture, Washington, DC, USA

    Google Scholar 

  • Koul O, Cuperus GW (2007) Ecologically based integrated pest management. CABI International, New York, USA

    Book  Google Scholar 

  • Kranthi K, Jadhav D, Kranthi S, Wanjari R, Ali S, Russell D (2002) Insecticide resistance in five major insect pests of cotton in India. Crop Protect 21:449–460

    Article  CAS  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    Article  CAS  PubMed  Google Scholar 

  • Lasota JA, Dybas RA (1990) Abamectin as a pesticide for agricultural use. Acta Leiden 59(1–2):217–225

    CAS  PubMed  Google Scholar 

  • Lebedeva KV, Vendilo NV, Ponomarev VL, Pletnev VA, Mitroshin DB (2002) Identification of pheromone of the greater wax moth Galleria mellonella from the different regions of Russia. IOBC WPRS Bull 25(9):229–232

    Google Scholar 

  • Litsinger JA, Libetario EM, Barrion AT (2002) Population dynamics of white grubs in the upland rice and maize environment of Northern Mindanao, Philippines. Int Pest Manage 48:239–260

    Article  Google Scholar 

  • Liu H, Cheng H, Wang X (1995) A general study on Chinese diet: pesticide residue. Health Res 24

    Google Scholar 

  • Loomans AJM, Van Lenteren JC (1995) Biological control oh thrips pests: a review on thrips parasitoids. Wageningen Agricultural University Papers 95-1, Wageningen, p 237

    Google Scholar 

  • Lopez JD, Leonhardt BA, Shaver TN (1991) Performance criteria and specifications for laminated plastic sex pheromone dispenser for Helicoverpa zea (Lepidoptera: Noctuidae). Chem Ecol 17(11):2293–2305

    Article  CAS  Google Scholar 

  • MacLeod A, Wratten SD, Sotherton NW, Thomas MB (2004) ’Beetle banks’ as refuges for beneficial arthropods in farmland: long-term changes in predator communities and habitat. Agri Entomol 6:147–154

    Article  Google Scholar 

  • Maelzer DA, Zalucki MP (2000) Long range forecasts of the numbers of Helicoverpa punctigera and H. armigera (Lepidoptera: Noctuidae) in Australia using the southern oscillation index and the sea surface temperature. Bull Entomol Res 90:133–146

    Article  CAS  PubMed  Google Scholar 

  • Malone LA, Burgess EPJ (2009) Impact of genetically modified crops on pollinators. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified crops, CAB International, Walligford, pp 199–222

    Google Scholar 

  • Martin T, Ochou GO, Hala-N'Klo F, Vassal JM, Vaissayre M (2000) Pyrethroid resistance in the cotton bollworm, Helicoverpa armigera (Hübner), in West Africa. Pest Manage Sci 56:549–554

    Article  CAS  Google Scholar 

  • Martins DJ (2014) Butterfly pollination of the dryland wildflower gloriosa minor. East Afr Nat Hist 103(1):25–30

    Article  Google Scholar 

  • Maxmen A (2013) Crop pests: under attack. Nature 501:15–17

    Article  CAS  Google Scholar 

  • McKinney K (1939) Common insects attacking sugar beets and vegetable crops in the Salt River Valley of Arizona. Econ Entomol 32:808–810

    Article  Google Scholar 

  • Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Are Bt crops safe? Nate Biotechnol 21:1003–1009

    Article  CAS  Google Scholar 

  • Mills N, Gutierrez A (1996) Prospective modelling in biological control: an analysis of the dynamics of heteronomous hyperparasitism in a cotton-whitefly-parasitoid system. Appl Ecol vol:1379–1394

    Google Scholar 

  • Mirab-Balou M, Tong X, Feng J, Chen X (2011) Thrips (Insecta: Thysanoptera) of China. 7(6): 720–744

    Google Scholar 

  • Momhinweg DW, Brewer MJ, Porter DR (2006) Effect of Russian wheat aphid on yield and yield components of field grown susceptible and resistant spring barley. Crop Sci 46:36–42

    Article  Google Scholar 

  • Morrill WL (1995) Insect pests of small grains. APS Press, St. Paul

    Google Scholar 

  • Morse S (1989) The integration of partial plant resistance with biological control by an indigenous natural enemy complex in affecting populations of cowpea aphid (Aphis craccivora Koch). PhD dissertation, University of Reading, UK

    Google Scholar 

  • Mullen JD, Norton GW, Reaves DW (1997) Economic analysis of environmental benefits of integrated pest management. Agric Appl Econ 29:243–253

    Article  Google Scholar 

  • Murphy BC, Rosenheim JA, Granett J, Pickett CH, Dowell RV (1998) Measuring the impact of a natural enemy refuge: the Prune tree/wineyard example. In: Pickett CH, Bugg RL (eds) Enhancing biological control: habitat management to promote natural enemies of agricultural pests. University of California Press, Berkeley, USA

    Google Scholar 

  • Naranjo SE (1993) The life-history of Trichogrammatoidea bactrae (Hymenoptera: Trichogrammatidae) an egg parasitoid of pink bollworm (Lepidoptera: Gelechidae) with emphasis on performance at high temperatures. Environ Entomol 22:1051–1059

    Article  Google Scholar 

  • Naranjo SE (2001) Conservation and evaluation of natural enemies in IPM systems for Bemisia tabaci. Crop Protect 20:835–852

    Article  Google Scholar 

  • Nash MA, Hoffmann AA (2012) Effective invertebrate pest management in dryland cropping in southern Australia: the challenge of marginality. Crop Protect 42:289–304

    Article  Google Scholar 

  • Nawaz A, Razpotnik A, Rouimi P, de Sousa G, Cravedi JP, Rahmani R (2014) Cellular impact of combinations of endosulfan, atrazine, and chlorpyrifos on human primary hepatocytes and HepaRG cells after short and chronic exposures. Cell Biol Toxicol 30(1):17–29

    Article  CAS  PubMed  Google Scholar 

  • Norris RF, Caswell-Chen EP, Kogan M (2002) Concepts in integrated pest management. Prentice-Hall of India Pvt. Ltd., New Delhi, India

    Google Scholar 

  • Ohayo-Mitoko GJA, Heederik DJJ, Kromhout H, Omondi BEO, Boleij JSM (1997) Acetylcholinesterase inhibition as an indicator of organophosphate and carbamate poisoning in Kenyan agricultural workers. Int J Occup Environ Health 3:210–220

    Article  CAS  PubMed  Google Scholar 

  • Olsen LG (1997) IPM labeling of food products boosts IPM. The IPM Report 6:4–5

    Google Scholar 

  • Ortiz R, Trethowan R, Ortiz Ferrara GF, Iwanaga M, Dodds JH, Crouch JH, Crossa J, Braun HJ (2007) High yield potential, shuttle breeding, genetic diversity and new international wheat improvement strategy. Euphytica 157:365–384

    Article  Google Scholar 

  • Pardo-Lopez L, Soberon M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37:3–22

    Article  CAS  PubMed  Google Scholar 

  • Park RF, Wellings CR, Bariana HS (2006) The Australian cereal rust control program: the challenge posed by changing pathogen populations. Agromeridian 2:76–79

    Google Scholar 

  • Pathak PK, Dhaliwal GS (1986) Trends and strategies for rice pest problems in tropical Asia. IRRI research paper series, 64 Los Baños, Philippines

    Google Scholar 

  • Pedigo LP (2003). Plant resistance to insects. In: Entomology and pest management. Prentice Hall of India (Pvt.) Ltd, New Delhi, India, pp 413–424

    Google Scholar 

  • Pedigo LP, Rice ME (2009) Entomology and pest management, 6th edn. PHI Learning (Pvt.) Ltd, New Delhi, India

    Google Scholar 

  • Perry AS, Perry RY (1989) Effects in arid regions. In: Bourdeau P, Haines JA, Klein W, Krishna Murti CR (eds) Ecotoxicology and climate with special reference to hot and cold climates. Wiley, New York, India

    Google Scholar 

  • Peterson GA, Schlegel A, Tanaka DL, Jones OR (1996) Precipitation use efficiency as affected by cropping and tillage systems. Prod Agric 9:180–186

    Article  Google Scholar 

  • Pimentel D (2009) Pest control in world agriculture. In: Lal R (eds) Agri Sci 2:498

    Google Scholar 

  • Ponsard S, Gutierrez AP, Mills NJ (2002) Effect of Bt-toxin (Cry1Ac) in transgenic cotton on the adult longevity of four heteropteran predators. Environ Entomol 31:1197–1205

    Article  CAS  Google Scholar 

  • Porter J, Parry M, Carter T (1991) The potential effects of climatic change on agricultural insect pests. Agri Forest Meteorol 57:221–240

    Article  Google Scholar 

  • Powell W (2000) The use of field margins in the manipulation of parasitoids for aphid control in arable crops. In: Proceedings of British crop protection conference, pests and diseases, Brighton, pp 579–584

    Google Scholar 

  • Régnière J, St-Amant R, Duval P (2012) Predicting insect distributions under climate change from physiological responses: spruce budworm as an example. Biol Invas 14:1571–1586

    Article  Google Scholar 

  • Reyes M, Franck P, Charmillot PJ, Ioriatti C, Olivares J, Pasqualini E, Sauphanor B (2007) Diversity of insecticide resistance mechanisms and spectrum in European populations of the codling moth, Cydia pomonella. Pest Manage Sci 63:890–902

    Article  CAS  Google Scholar 

  • Reyes M, Barros-Parada W, Ramírez CC, Fuentes-Contreras E (2015) Organophosphate resistance and its main mechanism in populations of Codling moth (Lepidoptera: Tortricidae) from central Chile. Econ Entomol 108:277–285

    Article  Google Scholar 

  • Rouault G, Candau JN, Lieutier F, Nageleisen LM, Martin JC, Warzée N (2006) Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann For Sci 63:613–624

    Article  Google Scholar 

  • Roush DK, McKenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32:361–380

    Article  CAS  PubMed  Google Scholar 

  • Royer TA, Krenzer EG (2000) Wheat management in Oklahoma: a Handbook Jor Oklahoma's wheat Industry. Publication E-831, Oklahoma Cooperative Extension Service, Oklahoma, USA

    Google Scholar 

  • Royer TA, Story S, Elliott NC (2007) Cereal aphid expert system and glance n’ go sampling education handbook. Oklahoma Cooperative Extension Service, Oklahoma State University Extension, Stillwater

    Google Scholar 

  • Samiee A, Rezvanfar A, Faham E (2009) Factors influencing the adoption of integrated pest management (IPM) by wheat growers in Varamin County, Iran. Afr Agric Res 4:491–497

    Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol 9:283–300

    Article  CAS  Google Scholar 

  • Sandhu HS, Wratten SD, Cullen R, Case B (2008) The future of farming: the value of ecosystem services in conventional and organic arable land: an experimental approach. Ecol Econ 64:835–848

    Article  Google Scholar 

  • Sarfraz M, Dosdall LM, Keddie BA (2005) Spinosad: a promising tool for integrated pest management. Outlook Pest Manage 16:78–84

    Article  CAS  Google Scholar 

  • Schellhorn NA, Macfadyen S, Bianchi FJJA, Williams DG, Zalucki PMP (2008) Managing ecosystem services in broadacre landscapes: what are the appropriate spatial scales? Aust Exp Agri 48:1549–1559

    Article  Google Scholar 

  • Schowalter TD (2011) Insect ecology: an ecosystem approach. Academic Press, London

    Google Scholar 

  • Scott M, Berrigan D, Hoffmann AA (1997) Costs and benefits of acclimation to elevated temperature in Trichogramma carverae. Entomol Exp Appl 85:211–219

    Article  Google Scholar 

  • Shachak M, Lovett GM (1998) Atmospheric deposition to a desert ecosystem and its implication for management. Ecol Appl 8:455–463

    Article  Google Scholar 

  • Shapiro DI, Stuart RJ, McCoy CW (2005) Targeted improvement of Steinernema carpocapsae for control of the pecan weevil, Curculio caryae (Horn) (Coleoptera: Curculionidae) through hybridization and bacterial transfer. Biol Control 34:215–221

    Article  Google Scholar 

  • Siegel A, Hari V (1980) Plant viruses. In: Carlson PS (eds) The biology of crop productivity. Academic Press, New York, pp 155–201

    Google Scholar 

  • Simmons A, Jackson D (2000) Evaluation of foliar-applied insecticides on abundance of parasitoids of Bemisia argentifolii (Homoptera: Aleyrodidae) in vegetables. Entomol Sci 35:1–8

    CAS  Google Scholar 

  • Singh R (2008) Crop protection by botanical pesticides. CBS Publishers and Distributors, New Delhi, India

    Google Scholar 

  • Skevas T, Stefanou SE, Lansink AO (2013) Do farmers internalise environmental spillovers of pesticides in production? Agri Econ 64:624–640

    Article  Google Scholar 

  • Smith K, Smith D, Lisle A (1999) Effect of field-weathered residues of pyriproxyfen on the predatory coccinellids Chilocorus circumdatus Gyllenhal and Cryptolaemus montrouzieri Mulsant. Anim Prod Sci 39:995–1000

    Article  CAS  Google Scholar 

  • Sorby K, Fleischer G, Pehu E (2005) Integrated pest management in development: review of trends and implementation strategies. In: Agriculture and rural development working paper 5. World Bank, Washington, DC

    Google Scholar 

  • Sotherton NW (1984) The distribution and abundance of predatory arthropods overwintering in farmland. Ann Appl Biol 105:423–429

    Article  Google Scholar 

  • Srinivasa MV (2000) Host plants of the spiraling whitefly Aleurodicus dispersus Russell (Hemiptera: Aleyrodidae). Pest Manage Hort Ecosyst 6:79–105

    Google Scholar 

  • Staley JT, Hodgson CJ, Mortimer SR, Morecroft MD, Masters GJ, Brown VK, Taylor ME (2007) Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. Eur Soil Biol 43:189–198

    Article  Google Scholar 

  • Strand MR, Obrycki JJ (1996) Host specificity of insect parasitoids and predators. BioScience 46:422–429

    Article  Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79

    Article  Google Scholar 

  • Tabashnik BE (2008) Delaying insect resistance to transgenic crops. Proc Natl Acad Sci, USA 105:19029–19030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabashnik BE, Van Rensburg J, Carrière Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. Econ Entomol 102:2011–2025

    Article  CAS  Google Scholar 

  • Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521

    Article  CAS  PubMed  Google Scholar 

  • Taheri S, Razmjou J, Rastegari N (2010) Fecundity and development rate of the bird cherry-oat aphid, Rhopalosiphum padi (L) (Homoptera: Aphididae) on six wheat cultivars. Plant Prot Sci 46:72–78

    Google Scholar 

  • Taylor TCH (1940) Report of the entomologist, Kawande. Report of the Department of Agriculture, Uganda (1938–1939) pp 9–24

    Google Scholar 

  • TEEB (2010) The economics of ecosystems and biodiversity: mainstreaming the economics of nature: a synthesis of the approach conclusions and recommendations of TEEB. Progress Press, Malta

    Google Scholar 

  • Thomas MB, Wratten SD (1988) Manipulating the arable crop environment to enhance the activity of predatory insects. Asp Appl Biol 17:57–66

    Google Scholar 

  • Thomson LJ, Robinson M, Hoffmann AA (2001) Field and laboratory evidence for acclimation without costs in an egg parasitoid. Func Ecol 15:217–221

    Article  Google Scholar 

  • Thorpe WH, Caudle HB (1938) A study of the olfactory responses of insect parasites to the food plant of their host. Parasitol 30:523–528

    Article  Google Scholar 

  • Tilman D, Knops J (1997) The influence of functional diversity and composition on ecosystem processes. Science 277(5330):1300–1302

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Tobin PC, Nagarkatti S, Loeb G, Saunders MC (2008) Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Global Change Biol 14:951–957

    Article  Google Scholar 

  • Tscharntke T, Rand TA, Bianchi FJJA (2005) The landscape context of trophic interactions: insect spillover across the crop-noncrop interface. Ann Zool Fenn 42:421–432

    Google Scholar 

  • Tschinkel WR, Close PG (1973) The trail pheromone of the termite, Trinervitermes trinervoides. Insect Physiol 19:707–721

    Article  CAS  Google Scholar 

  • Tsitsilas A, Hoffmann AA, Weeks AR, Umina PA (2011) Impact of groundcover manipulations within windbreaks on mite pests and their natural enemies. Aust Entomol 50:37–47

    Article  Google Scholar 

  • Uvarov B (1962) Development of arid lands and its ecological effects on their insect fauna. Arid Zone Res 18:235–248

    Google Scholar 

  • van Emden HF (2003) Conservation biological control: from theory to practice. In: Van Driesche R (eds) Proceedings of the international symposium on biological control of Arthropods, Honolulu, Hawaii, 14–18 January 2002. USDA Forest Service, Morgantown, pp 199–208

    Google Scholar 

  • van Emden HF, Peakall DB (1996) Beyond silent spring: integrated pest management and chemical safety. Chapman and Hall, London

    Book  Google Scholar 

  • Van Lenteren JC (2006) How not to evaluate augmentative biological control. Biol Contr 39:115–118

    Article  Google Scholar 

  • Van-der-Kraan C, Ebbers A (1990) Release rates of tetradecen-1-ol acetates from polymeric formulations in relation to temperature and air velocity. Chem Ecol 16(4):1041–1058

    Article  CAS  Google Scholar 

  • Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vargas RI, Shelly TE, Leblanc L, Piñero JC (2010) Recent advances in methyl eugenol and cue-lure technologies for fruit fly detection, monitoring, and control in Hawaii. Vitam Horm 83:575–595

    Article  CAS  PubMed  Google Scholar 

  • Vega FE, Kaya HK (Eds) (2012) Insect pathology, 2nd edn. Academic Press, San Diego, p 490

    Google Scholar 

  • Verheggen FJ, Haubruge E, Mescher MC (2010) Alarm pheromones. In: Litwack G (ed) Pheromones. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Vontas JG, Cosmidis N, Loukas M, Tsakas S, Hejazi MJ, Ayoutanti A, Hemingway J (2001) Altered acetylcholinesterase confers organophosphate resistance in the olive fruit fly Bactrocera oleae. Pestic Biochem Physiol 71:124–132

    Article  CAS  Google Scholar 

  • Vontas J, Hernández-Crespo P, Margaritopoulos JT, Ortego F, Feng HT, Mathiopoulos KD, Hsu JC (2011) Insecticide resistance in Tephritid flies. Pesticide Biochem and Physiol 100:199–205

    Article  CAS  Google Scholar 

  • Wang S, Just DR, Pinstrup-Anderson P (2008) Bt cotton and secondary pests. Int Biotechnol 10:113–121

    Article  Google Scholar 

  • Ward KD (2003) Three-way interactions between Acacia, large mammalian herbivores and bruchid beetles-a review. Afr Ecol 41:257–265

    Article  Google Scholar 

  • Way MJ (1988) Entomology of wheat. In: Harris MK, Rogers CE (eds) The entomology of indigenous and naturalized systems in agriculture. Vestview Press, Boulder, pp 183–206

    Google Scholar 

  • Way MJ, van Emden HF (2000) Integrated pest management in practice-pathways towards successful application. Crop Prot 19:81–103

    Article  Google Scholar 

  • Wilson DF, George BW (1986) Smoothleaf and hirsute cottons: response to insect pests and yield in Arizona. Econ Entomol 79:229–232

    Article  Google Scholar 

  • Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. Chem Ecol 36:80–100

    Article  CAS  Google Scholar 

  • Zalucki MP, Adamson D, Furlong MJ (2009) The future of IPM: whither or wither? Aust Entomol 48:85–96

    Article  Google Scholar 

  • Zhang A, Kuang LF, Maisin N, Karumuru B, Hall DR, Virdiana I, Lambert S, Bin Purung H, Wang S, Hebbar P (2008) Activity evaluation of cocoa pod borer sex pheromone in cacao fields. Environ Entomol 37:719–724

    Article  PubMed  Google Scholar 

  • Zhang JP, Christian S, Yu-Ling F, Ruo-Jian Z, Zhong-Ning Z (2012) An overlooked component: (Z)-9-tetradecenal as a sex pheromone in Helicoverpa armigera. Insect Physiol 58:1209–1216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Nawaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Nawaz, A., Gogi, M.D., Sufyan, M. (2016). Insect-Pests in Dryland Agriculture and their Integrated Management. In: Farooq, M., Siddique, K. (eds) Innovations in Dryland Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-47928-6_6

Download citation

Publish with us

Policies and ethics