Skip to main content

Weed Management in Dryland Cropping Systems

  • Chapter
  • First Online:
  • 1440 Accesses

Abstract

With dryland cropping regions (<500 mm annual rainfall) comprising a substantial proportion (≈40 %) of the world’s land area the production from these regions defines global food supply. Therefore, it is imperative that weeds, the major constraint to dryland crop production, are controlled to reduce their impact on food supply. With soil moisture and nutrient availability constantly limiting conservation cropping systems have been successfully and widely adopted through dryland cropping regions. There are numerous weed control opportunities throughout the production cycle. However, because of their efficacy and efficiency of use in dryland production systems herbicides are singularly relied on for weed control. The ensuing widespread evolution of herbicide resistance in very many weed biotypes threatens the future of these productive conservation cropping systems. Fortunately, there are now examples emerging (e.g., HWSC in Australia) of how the development and introduction of new weed control techniques can be used to support or even replace the use of herbicides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ACIAR (2002) Improving water-use efficiency in dryland cropping. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Aitken Y (1966) The flowering responses of crop and pasture species in Australia I. Factors affecting development in the field of Lolium species (L. rigidum Gaud., L. perenne L., L. multiflorum Lam.). Aust J Agric Res 17:821–839

    Article  Google Scholar 

  • Alemseged Y, Jones RE, Medd RW (2001) A farmer survey of weed management and herbicide resistance problems of winter crops in Australia. Plant Prot Q 16:21–25

    Google Scholar 

  • Anderson WK, Sharma DL, Shackley BJ, D'Antuono MF (2004) Rainfall, sowing time, soil type and cultivar influence optimum plant population for wheat in Western Australia. Aust J Agric Res 55:921–930

    Article  Google Scholar 

  • Andrew IKS, Storkey J, Sparkes DL (2015) A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res n/a-n/a

    Google Scholar 

  • Ascard J (1998) Comparison of flaming and infrared radiation techniques for thermal weed control. Weed Res 38:69–76

    Article  Google Scholar 

  • Blackshaw RE (2004) Application method of nitrogen fertilizer affects weed growth and competition with winter wheat. Weed Biol Manag 4:103–113

    Article  Google Scholar 

  • Blackshaw RE, Molnar LJ, Lindwall CW (1998) Merits of a weed-sensing sprayer to control weeds in conservation fallow and cropping systems. Weed Sci 46:120–126

    CAS  Google Scholar 

  • Blanco-Moreno JM, Chamorro L, Masalles RM, Recasens J, Sans FX (2004) Spatial distribution of Lolium rigidum seedlings following seed dispersal by combine harvesters. Weed Res 44:375–387

    Article  Google Scholar 

  • Borger CPD, Hashem A, Pathan S (2009) Manipulating crop row orientation to suppress weeds and increase crop yield. Weed Sci 58:174–178

    Article  Google Scholar 

  • Boutsalis P, Gill GS, Preston C (2012) Incidence of herbicide resistance in rigid ryegrass (Lolium rigidum) across Southeastern Australia. Weed Technol 26:391–398

    Article  CAS  Google Scholar 

  • Brodie G, Ryan C, Lancaster C (2012) Microwave technologies as part of an integrated weed management strategy: a review. Int J Agron. doi:10.1155/2012/636905

    Google Scholar 

  • Broster JC, Pratley J (2006) A decade of monitoring herbicide resistance in Lolium rigidum in Australia. Aust J Exp Agric 46:1151–1160

    Article  CAS  Google Scholar 

  • Chauhan BS, Gill G, Preston C (2006a) Tillage systems affect trifluralin bioavailability in soil. Weed Sci 54:941–947

    Article  CAS  Google Scholar 

  • Chauhan BS, Gill GS, Preston C (2006b) Tillage system effects on weed ecology, herbicide activity and persistence: a review. Aust J Exp Agric 46:1557–1570

    Article  CAS  Google Scholar 

  • Cheam AH, Code GR (1995) The biology of Australian weeds. 24. Raphanus raphanistrum L. Plant Prot Q 10:2–13

    Google Scholar 

  • Cousens R, Mortimer M (1995) Dynamics of weed populations. Cambridge University Press, Cambridge, UK, p 332

    Google Scholar 

  • Cramb J (2000) Global circulations affecting weather in south-western Australia. In: Anderson WK, Garlinge JK (eds) The wheat book: principles and practices. Department of Agriculture, Western Australia, pp 3–21

    Google Scholar 

  • D’Emden FH, Llewellyn RS, Burton MP (2008) Factors influencing adoption of conservation tillage in Australian cropping regions. Aust J Agric Resour Econ 52:169–182

    Article  Google Scholar 

  • Derpsch R, Friedrich T, Kassam A, Hongwen L (2010) Current status of adotopion of no-tillage farming in the world and some of its main benefits. Int J Agric Biol Eng 3:1–25

    Google Scholar 

  • Derpsch R, Franzluebbers AJ, Duiker SW, Reicosky DC, Koeller K, Friedrich T, Sturny WG, Sá JCM, Weiss K (2014) Why do we need to standardize no-tillage research? Soil Tillage Res 137:16–22

    Article  Google Scholar 

  • Dowling PM, Nicol HI (1993) Control of annual grasses by spraytopping and the effect on triticale grain yield. Aust J Agric Res 44:1959–1969

    Article  CAS  Google Scholar 

  • FAO (2000) Land resource potential and constraints at regional and country levels. FAO, Rome

    Google Scholar 

  • FAO (2015) Introduction to conservation agriculture (its principles & benefits). http://teca.fao.org/technology/introduction-conservation-agriculture-its-principles-benefits. Accessed Aug 2015

  • Gill GS, Holmes JE (1997) Efficacy of cultural control methods for combating herbicide-resistant Lolium rigidum. Pestic Sci 51:352–358

    Article  CAS  Google Scholar 

  • Gill G, Poole M, Holmes J (1987) Competition between wheat and brome grass in Western Australia. Aust J Exp Agric 27:291–294

    Article  Google Scholar 

  • Gommers CMM, Visser EJW, Onge KRS, Voesenek LACJ, Pierik R (2013) Shade tolerance: when growing tall is not an option. Trends Plant Sci 18:65–71

    Article  CAS  PubMed  Google Scholar 

  • Heap IM (2015). The international survey of herbicide resistant weeds. http://www.weedscience.com. Accessed 31 Aug 2015

  • Hunt JR, Browne C, McBeath TM, Verburg K, Craig S, Whitbread AM (2013) Summer fallow weed control and residue management impacts on winter crop yield though soil water and N accumulation in a winter-dominant, low rainfall region of southern Australia. Crop Pasture Sci 64:922–934

    Article  CAS  Google Scholar 

  • Hoyle JA, McElroy JS, Rose JJ (2012) Weed control using an enclosed thermal heating apparatus. Weed Technol 26:699–707

    Article  Google Scholar 

  • Jursík M, Soukup J, Holec J, Andr J (2011) Important aspects of chemical weed control: environmental factors affecting herbicide efficacy. Listy Cukrovarnické a Reparské 127:348

    Google Scholar 

  • Kassam A, Friedrich T, Derpsch R, Lahmar R, Mrabet R, Basch G, González-Sánchez EJ, Serraj R (2012) Conservation agriculture in the dry Mediterranean climate. Field Crops Res 132:7–17

    Article  Google Scholar 

  • Keller M, Gutjahr C, Möhring J, Weis M, Sökefeld M, Gerhards R (2014) Estimating economic thresholds for site-specific weed control using manual weed counts and sensor technology: an example based on three winter wheat trials. Pest Manage Sci 70:200–211

    Article  CAS  Google Scholar 

  • Kercher S, Conner JK (1996) Patterns of genetic variability within and among populations of wild radish, Raphanus raphanistrum (Brassicaceae). Am J Bot 83:1416–1421

    Article  Google Scholar 

  • Kim DS, Brain P, Marshall EJP, Caseley JC (2002) Modelling herbicide dose and weed density effects on crop: weed competition. Weed Res 42:1–13

    Article  CAS  Google Scholar 

  • Kloot P (1983) The Genus Lolium in Australia. Aust J Bot 31:421–435

    Article  Google Scholar 

  • Kon KF, Blacklow WM (1989) Identification, distribution and population variability of great brome (Bromus diandrus Roth.) and rigid brome (Bromus rigidus Roth.). Aust J Agric Res 39:1039–1050

    Article  Google Scholar 

  • Koohafkan P, Stewart BA (2012) Water and cereals in Drylands. Taylor and Francis, London

    Google Scholar 

  • Lemerle D, Gill GS, Murphy CE, Walker SR, Cousens RD, Mokhtari S, Peltzer SJ, Coleman R, Luckett DJ (2001) Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Aust J Agric Res 52:527–548

    Article  Google Scholar 

  • Lemerle D, Cousens RD, Gill GS, Peltzer SJ, Moerkerk M, Murphy CE, Collins D, Cullis BR (2004) Reliability of higher seeding rates of wheat for increased competitiveness with weeds in low rainfall environments. J Agric Sci 142:395–409

    Article  Google Scholar 

  • Leys AR, Cullis BR, Plater B (1991) Effect of spraytopping applications of paraquat and glyphosate on the nutritive value and regeneration of vulpia (Vulpia bromoides (L.) S.F. Gray). Australia J Agric Res 42:1405–1415

    Article  CAS  Google Scholar 

  • Llewellyn RS, D’Emden FH, Kuehne G (2012) Extensive use of no-tillage in grain growing regions of Australia. Field Crops Res 132:204–212

    Article  Google Scholar 

  • Llewellyn RS, Ronning D, Ouzman J, Walker SR, Mayfield A, Clarke M (2015) Impact of weeds on Australian grain production and adoption of tillage practices. CSIRO, Australia 160 p

    Google Scholar 

  • López-Granados F (2011) Weed detection for site-specific weed management: mapping and real-time approaches. Weed Res. 51:1–11

    Article  Google Scholar 

  • Lubbers MD, Stahlman PW, Al-Khatib K (2007) Fluroxypyr efficacy is affected by relative humidity and soil moisture. Weed Sci 55:260–263

    Article  CAS  Google Scholar 

  • Lutman PJW, Moss SR, Cook S, Welham SJ (2013) A review of the effects of crop agronomy on the management of Alopecurus myosuroides. Weed Res 53:299–313

    Article  Google Scholar 

  • Mahan JR, Dotray PA, Light GG (2004) Thermal dependence of enzyme function and inhibition; implications for, herbicide efficacy and tolerance. Physiol Plant 120:187–195

    Article  CAS  PubMed  Google Scholar 

  • Mansooji AM, Holtum JA, Boutsalis P, Matthews JM, Powles SB (1992) Resistance to aryloxyphenoxypropionate herbicides in two wild oat species (Avena fatua and Avena sterilis ssp. ludoviciana). Weed Sci 40:599–605

    CAS  Google Scholar 

  • Martin R, McMillan M, Cook J (1988) Survey of farm management practices of the northern wheat belt of New South Wales. Aust J Exp Agric 28:499–509

    Article  Google Scholar 

  • Marx C, Barcikowski S, Hustedt M, Haferkamp H, Rath T (2012) Design and application of a weed damage model for laser-based weed control. Biosyst Eng 113:148–157

    Article  Google Scholar 

  • Mayfield A, Presser R (1998) Crop-topping in pulses with paraquat and glyphosate for control of annual ryegrass. In: Proceedings of the agribusiness crop updates. Department of Agriculture Western Australia, Perth, pp 20–21

    Google Scholar 

  • McGowan A (1970) Comparative germination patterns of annual grasses in north-eastern Victoria. Aust J Exp Agric 10:401–404

    Article  Google Scholar 

  • Menchari Y, Délye C, Le Corre V (2007) Genetic variation and population structure in black-grass (Alopecurus myosuroides Huds.), a successful, herbicide-resistant, annual grass weed of winter cereal fields. Mol Ecol 16:3161–3172

    Article  CAS  PubMed  Google Scholar 

  • Monaghan NM (1980) The biology and control of Lolium rigidum as a weed of wheat. Weed Res 20:117–121

    Article  Google Scholar 

  • Morgan PW, Finlayson SA, Childs KL, Mullet JE, Rooney WL (2002) Opportunities to improve adaptability and yield in grasses: lessons from sorghum. Crop Sci 42:1791–1799

    Article  Google Scholar 

  • Oram P (1980) What are the worlds resources and constraints for dryland agriculture. In: Proceedings of the international congress dryland farming. Australia, Adelaide, pp 17–78

    Google Scholar 

  • Owen MJ, Goggin DE, Powles SB (2012a) Identification of resistance to either paraquat or ALS-inhibiting herbicides in two Western Australian Hordeum leporinum biotypes. Pest Manage Sci 68:757–763

    Article  CAS  Google Scholar 

  • Owen MJ, Goggin DE, Powles SB (2012b) Non-target-site-based resistance to ALS-inhibiting herbicides in six Bromus rigidus populations from Western Australian cropping fields. Pest Manage Sci 68:1077–1082

    Article  CAS  Google Scholar 

  • Owen MJ, Martinez NJ, Powles SB (2014) Multiple herbicide-resistant Lolium rigidum (annual ryegrass) now dominates across the Western Australian grain belt. Weed Res 54:314–324

    Article  CAS  Google Scholar 

  • Owen MJ, Martinez NJ, Powles SB (2015) Multiple herbicide-resistant wild radish (Raphanus raphanistrum) populations dominate Western Australian cropping fields. Crop Pasture Sci 66:1079–1085

    Article  CAS  Google Scholar 

  • Paterson JG (1976) The distribution of Avena species naturalized in Western Australia. J Appl Ecol 13:257

    Article  Google Scholar 

  • Pearce GA, Holmes JE (1976) The control of annual ryegrass. J Agric Western Australia 17:77–82

    Google Scholar 

  • Powles SB (1986) Appearance of a biotype of the weed, Hordeum glaucum Steud., resistant to the herbicide paraquat. Weed Res 26:167–172

    Article  Google Scholar 

  • Radford BJ, Wilson BJ, Cartledge O, Watkins FB (1980) Effect of wheat seeding rate on wild oat competition. Aust J Exp Agric Anim Husb 20:77–81

    Article  Google Scholar 

  • Reeves TG, Smith IS (1975) Pasture management and cultural methods for the control of annual ryegrass (Lolium rigidum) in wheat. Aust J Exp Agric Anim Husb 15:527–530

    Article  Google Scholar 

  • Roush ML, Radosevich SR (1985) Relationship between growth and competitiveness of four annual weeds. J Appl Ecol 22:895–905

    Article  Google Scholar 

  • Scotford IM, Miller PCH (2005) Applications of spectral reflectance techniques in Northern European cereal production: a review. Biosyst Eng 90:235–250

    Article  Google Scholar 

  • Steadman KJ, Eaton DM, Plummer JA, Ferris DG, Powles SB (2006) Late-season non-selective herbicide application reduces Lolium rigidum seed numbers, seed viability, and seedling fitness. Aust J Agric Res 57:133–141

    Article  CAS  Google Scholar 

  • Tucker ES, Powles SB (1991) A biotype of hare barley (Hordeum leporinum) resistant to paraquat and diquat. Weed Sci 39:159–162

    CAS  Google Scholar 

  • UNCCD (2015) An introduction to the United Nations Convention to combat desertification http://www.unccd.int. Accessed Sept 2015

  • Vandenbussche F, Pierik R, Millenaar FF, Voesenek LACJ, Van Der Straeten D (2005) Reaching out of the shade. Curr Opin Plant Biol 8:462–468

    Article  CAS  PubMed  Google Scholar 

  • Vigneault C, Benoit DL, McLaughlin NB (1990) Energy aspects of weed electrocution. Rev Weed Sci 5:15–26

    Google Scholar 

  • Walsh MJ, Minkey DM (2006) Wild radish (Raphanus raphanistrum L.) development and seed production in response to time of emergence, crop topping and sowing rate of wheat. Plant Prot Q 21(1):25–29

    Google Scholar 

  • Walsh MJ, Powles SB (2009) impact of crop-topping and swathing on the viable seed production of wild radish (Raphanus raphanistrum). Crop Pasture Sci 60:667–674

    Article  Google Scholar 

  • Walsh MJ, Powles SB (2014) High seed retention at maturity of annual weeds infesting crop fields highlights the potential for harvest weed seed control. Weed Technol 28:486–493

    Article  Google Scholar 

  • Walsh MJ, Newman P (2007) Burning narrow windrows for weed seed destruction. Field Crop Res 104:24–40

    Article  Google Scholar 

  • Walsh MJ, Owen MJ, Powles SB (2007) Frequency and distribution of herbicide resistance in Raphanus raphanistrum populations randomly collected across the Western Australia wheatbelt. Weed Res 47:542–550

    Article  CAS  Google Scholar 

  • Walsh MJ, Maguire N, Powles SB (2009) Combined effects of wheat competition and 2.4-D amine on phenoxy herbicide resistant Raphanus raphanistrum populations. Weed Res 49:316–325

    Article  CAS  Google Scholar 

  • Walsh MJ, Newman P, Powles SB (2013) Targeting weed seeds in-crop: a new weed control paradigm for global agriculture. Weed Technol 27:431–436

    Article  Google Scholar 

  • Walsh MJ, Aves C, Powles SB (2014) Evaluation of harvest weed seed control systems. In: Barker M (ed) 19th Australasian weeds conference. Tasmanian Weed Science Society, Hobart, pp 288–291

    Google Scholar 

  • Yenish JP, Young FL (2004) Winter wheat competition against jointed goatgrass (Aegilops cylindrica) as influenced by wheat plant height, seeding rate, and seed size. Weed Sci 52:996–1001

    Article  CAS  Google Scholar 

  • Zerner MC, Gill GS, Vandeleur RK (2008) Effect of height on the competitive ability of wheat with oats. Agron J 100:1729–1734

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Walsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Walsh, M. (2016). Weed Management in Dryland Cropping Systems. In: Farooq, M., Siddique, K. (eds) Innovations in Dryland Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-47928-6_4

Download citation

Publish with us

Policies and ethics