Skip to main content

Breeding and Genetic Enhancement of Dryland Crops

  • Chapter
  • First Online:
Innovations in Dryland Agriculture

Abstract

Dryland agriculture is practiced in almost all hydro-climatic zones, and can be highly productive. A substantial increase in yields of various crops has been achieved during last few decades as a result of release of many input responsive varieties. Several crops have reached maximum potential, however, most of this work has been done for irrigated areas and relatively less work has been done for agriculture in drylands. The situation in drylands with heat has made the task even more difficult. Crop modeling shows that climate change will likely reduce the crop production, thus reducing food availability and affecting food security. With the increasing temperature and precipitation fluctuations, water availability and crop production are likely to decrease in the future. The performance of genotypes in different environments is challenging and complicates the selection of superior genotypes, thereby reducing the genetic progress. Improved varieties and efficient crop husbandry practices in dryland agriculture can result in better productivity of cereals, grain legumes and fodder crops. Recently, a number of breeding programs have been initiated both in the Consultative Group for International Agricultural Research (CGIAR) centers and national programs targeting drylands. To increase the genetic diversity of crop plants, the one way is to take advantage of available genetic resources present in nature, the easiest to exploit are their landraces comparatively and the wild relatives of different crops. Emphasis should be given to water use efficiency; water saved by one crop can be used for another. Advantage of new technologies including high- throughput genotyping and phenotyping needs to be taken to enhance the progress in dryland crops. For the global food security in the near future, dryland agriculture is going to play a major role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo E, Craufurd PQ, Austin RB, Perezmarco P (1991) Traits associated with high-yield in barley in low-rainfall environments. J Agric Sci 116:23–36

    Article  Google Scholar 

  • Aguilar-Rincón VH, Singh PR, Huerta-Espino J (2000) Inheritance of resistance to leaf rust in four synthetic hexaploid wheats. Agrociencia. 354:235–246

    Google Scholar 

  • Allard RW, Bradshaw AD (1964) Implications of genotype environment interactions. Crop Sci 4:503–508

    Article  Google Scholar 

  • Annicchiarico P (1997) Joint regression vs AMMI analysis of genotype–environment interactions for cereals in Italy. Euphytica 94:53–62

    Article  Google Scholar 

  • Annicchiarico P (2002) Genotype × environment interactions: challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper No. 174. FAO, Rome

    Google Scholar 

  • Annicchiarico P, Bellah F, Chiari T (2005) Defining subregions and estimating benefits for a specific-adaptation strategy by breeding programs: a case study. Crop Sci 45:1741–1749

    Article  Google Scholar 

  • Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F, De Bellis L, Turchi L, Giuliano G, Cattivelli L (2009) Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics 10:279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Araus JL, Ferrio JP, Buxo R, Voltas J (2007) The historical perspective of dryland agriculture: lessons learned from 10,000 years of wheat cultivation. J Exp Bot 58:131–145

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C-3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Assefa S, Fehrmann H (2000) Resistance to wheat leaf rust in Aegilops tauschii Coss. and inheritance of resistance in hexaploid wheat. Genet Resour Crop Evol 47:135–140

    Article  Google Scholar 

  • Avci M (1999) Impact of water use effieicnecy research and OSWU, and use of information tools and methodologies in Turkey. In: Van Duivenbooden N, Pala M, Studer C, Bielders CL (eds) Efficient soil water use: the key to sustainable crop production in the dry areas of West Asia, and North and Sub-Saharan Africa. ICARDA/ICRISAT, Aleppo/Patancheru, pp. 405–412

    Google Scholar 

  • Avci M, Guler M, Pala M, Durutan N, Karaca M, Eyuboglu H (1987) The effects of the different components of package of cultural practices on wheat yield under central Anatolian conditions (in Turkish). TUBITAK, U.U. Faculty of Agriculture, Bursa, pp 147–157

    Google Scholar 

  • Basford KE, Cooper M (1998) Genotype x environment interactions and some considerations of their implications for wheat breeding in Australia. Aust J Agri Res 49:153–174

    Article  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 9:240–244

    Article  CAS  Google Scholar 

  • Baum M, Lagudah ES, Apples R (1992) Wide crosses in cereals. Annu Rev Plant Physiol Plant Mol Biol 43:117–143

    Article  Google Scholar 

  • Bennett E (1970) Adaptation in wild and cultivated plant populations. In: Frankel OH, Bennett E (eds) Genetic resources in plants: their exploration and conservation. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B 274:227–274

    Article  CAS  Google Scholar 

  • Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–516

    Article  Google Scholar 

  • Bloem MW, Semba RD, Kraemer K (2010) Castel Gandolfo workshop: an 18 introduction to the impact of climate change, the economic crisis and the increase in the food prices on malnutrition. J Nutr 140:132–135

    Article  CAS  Google Scholar 

  • Blumenthal C, Bekes F, Gras PW, Barlow EWR, Wrigley CW (1995) Influence of wheat genotypes tolerant to the effects of heat stress on grain quality. Cereal Chem 72:539–544

    CAS  Google Scholar 

  • Borlaug NE (2008) Feeding a world of 10 billion people: Our 21st century challenge. In: Scanes CG, Miranowski JA (eds) Perspectives in world food and agriculture 2004. Iowa State Press, Ames

    Google Scholar 

  • Braun HJ, Rajaram S, van Ginkel M (1996) CIMMYT’s approach to breeding for wide adaptation. Euphytica 92:175–183

    Article  Google Scholar 

  • Braun HJ, Rajaram S, van Ginkel M (1997) CIMMYT’s approach to breeding for wide adaptation. In: Tigerstedt PMA (ed) Adaptation in plant breeding. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Breseghello F (2013) Traditional and modern plant breeding methods with examples in rice (Oryza sativa L). J Agric Food Chem 61:8277–8286

    Article  CAS  PubMed  Google Scholar 

  • Bridgen MP (1994) A review of plant embryo culture. HortSci 29:1243–1246

    Google Scholar 

  • Byerlee D (1996) Modem varieties, productivity, and sustainability: recent experience and emerging challenges. World Dev 24:697–718

    Article  Google Scholar 

  • Calderini DF, Reynolds MP, Slafer GA (1999) Genetic gains in wheat yield and main physiological changes associated with them during the 20th century. In: Satorre EH, Slafer GA (eds) Wheat: ecology and physiology of yield determination. Food Product Press, New York, pp. 351–377

    Google Scholar 

  • Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Peñuelas J (2010) Wide spread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA 108:1474–1478

    Article  CAS  Google Scholar 

  • Castro AJ, Chen X, Hayes PM, Johnston M (2003) Pyramiding Quantitative Trait Locus (QTL) alleles determining resistance to barley stripe rust: effects on resistance at the seedling stage. Crop Sci 43:651–659

    Article  CAS  Google Scholar 

  • Ceccarelli S (1996) Positive interpretation of genotype by environment interactions in relation to sustainability and biodiversity. In Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford; ICRISAT, Patancheru; IRRI, Manila, pp 467–486

    Google Scholar 

  • Ceccarelli S (2009) Main stages of a plant breeding programme. In: Ceccarelli S, Guimaraes EP, Weltzien E (eds) Plant breeding and farmer participation. Rome, FAO, pp. 63–74

    Google Scholar 

  • Ceccarelli S (2015) Efficiency of Plant Breeding. Crop Sci 55:87–97

    Article  Google Scholar 

  • Ceccarelli S, Acevedo E, Grando S (1991) Breeding for yield stability in unpredictable environments: Single traits, interaction between traits, and architecture of genotypes. Euphytica 6:169–185

    Article  Google Scholar 

  • Ceccarelli S, Grando S (1987) Diversity for morphological and agronomic characters in Hordeum vulgare ssp. spontaneum C. Koch. Genet Agr 41:131–142

    Google Scholar 

  • Ceccarelli S, Grando S (2007) Decentralized-participatory plant breeding: an example of demand driven research. Euphytica 155:349–360

    Article  Google Scholar 

  • CGIAR (2013) New research approaches to improve drylands agriculture to deliver a more prosperous future. http://www.cgiar.org/web-archives/www-cgiar-org-impact-global-des_fact2-html. Accessed on 12 July 2015

  • Chandra-Babu R, Nguyen BD, Chamarerk V, Shanmugasundaram P, Chezhian P, Jeyaprakash P, Ganesh SK, Palchamy A, Sadasivam S, Sarkarung S, Wade LJ, Nguyen HT (2003) Genetic analysis of drought resistance in rice by molecular markers: association between secondary traits and field performance. Crop Sci 43:1457–1469

    Article  Google Scholar 

  • Chapman SC, Hammer GL, Butler DG, Cooper M (2000) Genotype by environment interactions affecting grain sorghum. III. Temporal sequences and spatial patterns in the target population of environments. Aust J Agric Res 51:223–233

    Article  Google Scholar 

  • Chee PW, Elias EM, Anderson JA, Kianian SF (2001) Evaluation of a high grain protein QTL from Triticum turgidum L. var. dicoccoides in an adapted durum wheat back- ground. Crop Sci 41:295–301

    Article  CAS  Google Scholar 

  • Chen ZH, Zhou MX, Newman IA, Mendham NJ, Zhang GP, Shabala S (2007) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162

    Article  CAS  Google Scholar 

  • Chu C-G, Faris JD, Friesen TL, Xu SS (2006) Molecular mapping of hybrid necrosis genes Ne1 and Ne2 in hexaploid wheat using microsatellite markers. Theor Appl Genet 112:1374–1381

    Article  CAS  PubMed  Google Scholar 

  • Chu C-G, Friesen TL, Xu SS, Faris JD (2008) Identification of novel tan spot resistance loci beyond the known host-selective toxin insensitivity genes in wheat. Theor Appl Genet 117:873–881

    Article  CAS  PubMed  Google Scholar 

  • Collins GB, Grosser JW (1984) Culture of embryos. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Laboratory procedures and their applications. Academic, New York, pp. 241–257

    Google Scholar 

  • Colmer TD, Flowers J, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  CAS  PubMed  Google Scholar 

  • Cossani CM, Savin R, Slafer GA (2007) Contrasting performance of barley and wheat in a wide range of conditions in Mediterranean Catalonia (Spain). Ann Appl Biol 151:167–173

    Article  CAS  Google Scholar 

  • Cox TS, Sears GR, Gill BS, Jellen EN (1994) Registration of KS91WGRC11, KS92WGRC15, and KS92WGRC23 leaf rust-resistant hard red winter wheat germ- plasms. Crop Sci 34:546

    Google Scholar 

  • Curtis BC (2002) Wheat in the world. In: Curtis BC, Rajaram S, Go ́mez Macpherson H (eds) Bread wheat. FAO, Rome

    Google Scholar 

  • Dalrymple DG (1986) Development and spread of high-yielding wheat varieties in developing countries. Bureau for Science and Technology, U.S. Agency for International Development, Washington, DC

    Google Scholar 

  • Davies J, Berzonsky WA, Leach GD (2006) A comparison of marker-assisted and phenotypic selection for high grain protein content in spring wheat. Euphytica 152:117–134

    Article  CAS  Google Scholar 

  • De Groote H, Siambi M, Friesen D, Diallo A (2002) Identifying farmers’ preferences for new maize varieties in eastern Africa. In: Bellon MR, Reeves J (eds) Quantitative analysis of data from participatory methods in plant breeding. CIM MYT, Mexico, pp. 82–102

    Google Scholar 

  • DeLacy IH, Basford KE, Cooper M, Bull JK, McClaren CG (1996) Analysis of multi-environment trials–an historical perspective. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, pp. 39–124

    Google Scholar 

  • DeLacy IH, Fox PN, Corbett JD, Crossa J, Rajaram S, Fischer RA, van Ginkel M (1994) Long-term association of locations for testing spring bread wheat. Euphytica 72:95–106

    Article  Google Scholar 

  • Denčić S, Kastori R, Kobiljski B, Duggan B (2000) Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica 113:43–52

    Article  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafsom GP (ed) Gene manipulation in plant improvement. Plenuim Press, New York, pp. 209–279

    Chapter  Google Scholar 

  • Dhillon NK, Gosal SS, Kang MS (2013) Improving crop productivity under changing environment. In: Tuteja N, Sarvajeet SG, Tuteja R (eds) Improving crop productivity in sustainable agriculture, pp 23–48

    Google Scholar 

  • Diab AA, Teulat-Merah B, This D, Ozturk NZ, Benscher D, Sorrells ME (2004) Identification of drought inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet 109:1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Dodig D, Zorić M, Kandić V, Perović D, Šurlan-Momirović G (2012) Comparison of responses to drought stress of 100 wheat accessions and landraces to identify opportunities for improving wheat drought resistance. Plant Breeding 131:369–379

    Article  Google Scholar 

  • Dolferus R, Ji X, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181:331–341

    Article  CAS  PubMed  Google Scholar 

  • Eberhart SA, Russell WA (1966) Stability parameters for comparing varieties. Crop Sci 6:36–40

    Article  Google Scholar 

  • Eglinton Jk, Evans DE, Brown AHD, Langridge P, McDonald G, Jefferies SP, Barr AR (1999) The use of wild barley (Hordeum vulgare ssp. spontaneum) in breeding for quality and adaptation. 9 Australian barley technical symposium, Melbourne

    Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO (2011) Highlands and drylands – mountains, a source of resilience in arid regions. Published by FAO, UNCCD, Mountain Partnership, Swiss Agency for Development and Cooperation, and CDE, with the support of an international group of experts. Food and Agriculture Organization, Italy, Rome

    Google Scholar 

  • Farooq M, Bramley H, Palta JA, Siddique KHM (2011) Heat stress in wheat during reproductive and grain filling phases. Crit Rev Plant Sci 30:491–507

    Article  Google Scholar 

  • Fehr WR (1984) Genetic contributions to yield gains of five major crop plants. CSSA Special Publication, 7. ASA and CSSA, Madison

    Google Scholar 

  • Feldmann M (2001) Origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book. A history of wheat breeding, Lavoiser Publishing, France

    Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32

    Article  CAS  PubMed  Google Scholar 

  • Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant-breeding programme. Aus J Agric Res 14:742–754

    Article  Google Scholar 

  • Francia E, Tondelli A, Rizza F, Badeck FW, Nicosia OLD, Akar T, Grando S, Al-Yassing A, Benbelkacem A, Thomas WTB, van Eeuwijk F, Romagosa I, Stanca AM, Pecchioni N (2011) Determinants of barley grain yield in a wide range of Mediterranean environments. Field Crops Res 120:169–178

    Article  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Frison EA, Cherfas J, Hodgkin T (2011) Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3:238–253

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Expt Cell Res 50:151–158

    Article  CAS  Google Scholar 

  • Gauch HG (1992) AMMI analysis of yield trials. In: Kang MS, Gauch HG (eds) Genotype-by-environment interaction. CRC Press, Boca Raton, pp. 1–40

    Google Scholar 

  • Gauch HG, Zobel RW (1997) Identifying mega-environments and targeting genotypes. Crop Sci 37:311–326

    Article  Google Scholar 

  • Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42:1780–1790

    Article  Google Scholar 

  • Gepts P, Hancock J (2006) The future of plant breeding. Crop Sci 46:1630–1634

    Article  Google Scholar 

  • Giunta F, Motzo R, Pruneddu G (2008) Has long term selection for yield in durum wheat also induced changes in leaf and canopy traits? Field Crops Res 106:68–76

    Article  Google Scholar 

  • Goodman RM, Hauptli H, Croosway A, Knauf VC (1987) Gene transfer in crop improvement. Science 236:48–54

    Article  CAS  PubMed  Google Scholar 

  • Gowda CLL, Parthasarathy Rao P, Bhagavatula S (2009) Global trends in production and trade of major grain legumes. International Conference on Grain Legumes: Quality Improvement, Value Addition and Trade; February 14–16; Indian Institute of Pulses Research, Kanpur, India: Indian Society of Pulses Research and Development; 2009, pp 282–301

    Google Scholar 

  • Grando S, von Bothmer R, Ceccarelli S (2001) Genetic diversity of barley: use of local adapted germplasm to enhance yield and yield stability of barley in dry areas In: Cooper HD, Hodgkin T, Spillane C (eds) Broadening the genetic base of crop production. CABI, New York/AO, Rome/IPRI, Rome, pp 351-372

    Google Scholar 

  • Graybosch RA (2001) Uneasy unions: Quality effects of rye chromatin transfers to wheat. J Cereal Sci 33:3–16

    Article  CAS  Google Scholar 

  • Gregory RS (1980) Hybrid necrosis as a problem in handling hexaploid × tetraploid wheat crosses. J Agric Sci 94:377–382

    Article  Google Scholar 

  • Guzy-Wrobelska J, Labocha-Pawlowska A, Kwasniewski M, Szarejko I (2007) Different recombination frequencies in wheat doubled haploid populations obtained through maize pollination and anther culture. Euphytica 156:173–183

    Article  Google Scholar 

  • Guzy-Wrobelska J, Szarejko I (2003) Molecular and agronomic evaluation of wheat doubled haploid lines obtained through maize pollination and anther culture methods. Plant Breed 122:305–313

    Article  CAS  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hawkes JG, Maxted N, Ford-Lloyd BV (2000) The genetic resources of plants and their value to mankind: the ex situ conservation of plant genetic resources. Kluwer Academic Publishers, London, pp. 1–18

    Book  Google Scholar 

  • Heiser CB (1990) Seed to cultivation: the story of food. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Hermsen JG (1963) Hybrid necrosis as a problem for the wheat breeder. Euphytica 12:1–16

    Google Scholar 

  • Hernandez-Segundo E, Capettini F, Trethowan R, van Ginkel M, Mejia A, Carballo A, Crossa J, Vargas M, Balbuena MA (2009) Mega-environment identification for barley based on twenty-seven years of global grain yield data. Crop Sci 49:1705–1718

    Article  Google Scholar 

  • Heslop-Harrison J (1982) Pollen-stigma interaction and cross-incompatibility in the grasses. Science 215:1358–1364

    Google Scholar 

  • Hirano R, Kikuchi A, Kawase M, Watanabe KN (2008) Evaluation of genetic diversity of bread wheat landraces from Pakistan by AFLP and implications for a future collection strategy. Genet Res Crop Evol 55:1007–1015

    Article  Google Scholar 

  • Hodson DP, White JW (2007) Use of spatial analyses for global characterization of wheat-based production systems. J Agri Sci 145:115–125

    Article  Google Scholar 

  • Hoisington D, Listman GM, Morris ML (1998) Varietal development: applied biotechnology. In: Morris ML (ed) Maize seed industries in developing countries. Lynne Rienner Publishers/CIMMYT, Boulder, pp. 77–102

    Google Scholar 

  • Hoisington D, Kahairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: What can they contribute toward increased crop productivity. Proc Natl Acad Sci 96:5937–5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holme IB, Wendt T, Holm PB (2013) Current developments of intragenic and cisgenic crops. ISB news report

    Google Scholar 

  • Howden SM, Soussana JF, Tubiello FN, Chhetri N, Dunlop M, Meinke H (2007) Adapting agriculture to climate change. Proc Natl Acad Sci 104:19691–19696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate Change. In: Salomon S, Quin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HD (eds) Cambridge University Press, Cambridge/New York, pp 996

    Google Scholar 

  • Ishii T, Tanaka H, Eltayeb AE, Tsujimoto H (2012) Wide hybridization between oat and pearl millet belonging to different subfamilies of Poaceae. Plant Rep 26:25–32

    Article  Google Scholar 

  • Ivandic V, Hackett CA, Zhang ZJ, Staub JE, Nevo E, Thomas WTB, Forster BP (2000) Phenotypic responses of wild barley to experimentally imposed water stress. J Exp Bot 51:2021–2029

    Article  CAS  PubMed  Google Scholar 

  • Jackson LE, Pascual U, Hodgkin T (2007) Utilizing and conserving agrobiodiversity in agricultural landscapes. Agri Ecosys Environ 121:196–210

    Article  Google Scholar 

  • Jacobsen SE, Jensen CR, Liu F (2012) Improving crop production in the arid Mediterranean climate. Field Crops Res 128:34–47

    Article  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  Google Scholar 

  • Joshi SP, Ranjekar PK, Gupta VS (1999) Molecular markers in plant genome analysis. Curr Sci 77:230–240

    CAS  Google Scholar 

  • Juenger TE, McKay J, Hausmann N, Keurenties J, Sen S, Stowe K, Dawson T, Simms E, Richards J (2005) Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana II. QTL analysis of new mapping population, Kas-1 Tsu-1. Evolution 62:3014–3026

    Google Scholar 

  • Kang MS (1998) Using genotype-by-environment interaction for crop cultivar development. Adv Agron 62:199–252

    Article  Google Scholar 

  • Kholova J, Hash CT, Lava-Kumar P, Yadav RS, Kocova M, Vadez V (2010) Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapor pressure deficit. J Exp Bot 61:1431–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirigwi FM, Van Ginkel M, Brown-Guedira G, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    Article  CAS  Google Scholar 

  • Ladizinsky G, Pickersgill B, Yamamoto K (1988) Exploitation of wild relatives of the food legumes. In: Summer field RJ (eds) Word crops: cool season food legumes, Kluwer Academic Publishers, Dordrecht, pp 967–978

    Google Scholar 

  • Lal R, Stewart B, Uphoff N (2005) Climate change, soil carbon dynamics, and global food security climate change and global food security. CRC Press, Boca Raton, pp. 113–143

    Google Scholar 

  • Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurie DA, Bennett MD (1986) Wheat × maize hybridization. Can J Genet Cytol 28:313–316

    Article  Google Scholar 

  • Lein A (1943) Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. Z. Indukt. Abstamm. Vererbungsl 8:28–61

    Google Scholar 

  • Li Z, Mu P, Li C, Zhang H, Li Z, Gao Y, Wang X (2005) QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theor Appl Genet 110:1244–1252

    Article  CAS  PubMed  Google Scholar 

  • Lillemo M, Chen F, Xia XC, William M, Pena RJ, Trethowan R, He ZH (2006) Puroindoline grain hardness alleles in CIMMYT bread wheat germplasm. J Cereal Sci 44:86–92

    Article  CAS  Google Scholar 

  • Lin CS, Butler G (1990) Cluster analyses for analyzing two way classification data. Agron J 82:344–348

    Article  Google Scholar 

  • Liu W, Ming YZ, Polle AE, Konzak CF (2002) Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci 42:686–692

    Article  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate crop yield relationships and the impacts of recent warming. Environ Res Let 2:1–7

    Google Scholar 

  • Lupton FGH (1987) History of wheat breeding. In: Lupton FGH (ed) Wheat Breeding: Its Scientific Basis. Chapman and Hall, London

    Chapter  Google Scholar 

  • Macindoe SL, Brown CW (1968) Wheat breeding and varieties in Australia. Science bulletin No. 76, 3rd edn. New South Wales Department of Agriculture, Sydney

    Google Scholar 

  • Matous K, Benediktyova Z, Berger S, Roitsch T, Nedbal L (2006) Case study of combinatorial imaging: what protocol and what chlorophyll fluorescence image to use when visualizing infection of Arabidopsis thaliana by Pseudomonas syringae? Photosynth Res 90:243–253

    Article  CAS  PubMed  Google Scholar 

  • Mazid A, Tutwiler R, Al-Ahmad H (1998) Impact of modern technologies on durum wheat production in Syria. In: Nachit MM, Baum M, Porceddu E, Monneveaux P, Picard E (eds) Proceedings of the SEWANA (South Europe, West Asia and North Africa) Durum Research Network Workshop. ICARDA, Aleppo, pp 88–102

    Google Scholar 

  • McCouch S (2013) Feeding the future. Nature 499:23–24

    Article  CAS  PubMed  Google Scholar 

  • McFadden ES (1930) A successful transfer of emmer characters to vulgare wheat. J Am Soc Agron 22:1020–1034

    Article  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publications, East Melbourne

    Book  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer-lasting heat waves in the 21st century. Science 305:994–997

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi R, Amri A (2013) Genotype × environment interaction and genetic improvement for yield and yield stability of rainfed durum wheat in Iran. Euphytica 192:227–249

    Article  CAS  Google Scholar 

  • Mohammadi R, Amri A, Ahmadi H, Jafarzadeh J (2015) Characterization of tetraploid wheat landraces for cold tolerance and agronomic traits under rainfed conditions of Iran. J Agric Sci 153:631–645

    Article  CAS  Google Scholar 

  • Mohammadi R, Haghparast R (2011) Evaluation of rainfed promising wheat breeding lines on farmers’ fields in west of Iran. Int J Plant Breed 5:30–36

    Google Scholar 

  • Mohammadi R, Haghparast R, Amri A, Ceccarelli S (2010) Yield stability of rain-fed durum wheat and GGE biplot analysis of multi-environment trials. Crop Pasture Sci 61:92–101

    Article  Google Scholar 

  • Mohammadi R, Haghparast R, Sadeghzadeh B, Ahmadi H, Solimani K, Amri A (2014) Adaptation patterns and yield stability of durum wheat landraces to highland cold rainfed areas of Iran. Crop Sci 54:944–954

    Article  Google Scholar 

  • Mohammadi R, Sadeghzadeh D, Armion M, Amri A (2011) Evaluation of durum wheat experimental lines under different climate and water regime conditions of Iran. Crop Pasture Sci 62:137–151

    Article  Google Scholar 

  • Moreau L, Charcosset A, Gallais A (2004) Use of trial clustering to study QTL environment effects for grain yield and related traits in maize. Theor Appl Genet 110:92–105

    Article  CAS  PubMed  Google Scholar 

  • Morris ML, Bellon MR (2004) Participatory plant breeding research: opportunities and challenges for the international crop improvement system. Euphytica 136:21–34

    Article  Google Scholar 

  • Moseman JG, Nevo E, El-Morshidy MA, Zohary D (1984) Resistance of Triticum dicoccoides to infection with Erysiphe graminis tritici. Euphytica 33:41–47

    Article  Google Scholar 

  • Motzo R, Fois S, Giunta F (2005) Relationship between grain yield and quality of durum wheats from different eras of breeding. Euphytica 140:147–154

    Article  Google Scholar 

  • Mujeeb-Kazi A (2003) Wheat improvement facilitated by novel genetic diversity and in vitro technology. Plant Cell Tissue Organ Cult 13:179–210

    Google Scholar 

  • Mujeeb-Kazi A, Kimber G (1985) The production, cytology and practicality of wide hybrids in the Triticeae. Cereal Res Commun 13:111–124

    Google Scholar 

  • Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat. T. tauschii; 2n1⁄46x 1⁄442, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol 43:129–134

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naghavi MR, Mardi M (2010) Characterization of genetic variation among accessions of Aegilops tauschii, AsPac. J Mol Biol Biotechnol 18:93–96

    Google Scholar 

  • Nevo E, Gorham J, Beiles A (1992) Variation for 22Na uptake in wild emmer wheat, Triticum dicoccoides in Israel: salt tolerance resources for wheat improvement. J Exp Bot 43:511–518

    Article  CAS  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of Wild Emmer and Wheat Improvement. Population Genetics, Genetic Resources, and Genome Organization of Wheats Progenitor, Triticum dicoccoides. Springer, Berlin

    Google Scholar 

  • Nishikawa K, Mori T, Takami N, Furuta Y (1974) Mapping of progressive necrosis genes Ne1 and Ne2 of common wheat by the telocentric method. JPN J Breed 24:277–281

    Article  Google Scholar 

  • Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Kazi AG, Gosnian N, Lagudah ES (2013) Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breed Rev 37:35–122

    Google Scholar 

  • Ortiz R, Iwanaga M, Reynolds MP, Wu H, Crouch J (2007) Overview on crop genetic engineering for drought prone environments. J Semi-Arid Trop Agric Res 4:1–30

    Google Scholar 

  • Ortiz-Ferrara G, Bhatta MR, Pokharel TP, Mudwari A, Thapa DB, Joshi AK, Chand R, Muhammad D, Duveiller R, Rajaram S (2001) Farmer participatory variety selection in South Asia. In: Research Highlights of the Wheat Program 1999–2000. Centro Internacional de Mejoramiento de Maı´zy Trigo, Mexico, pp. 33–37

    Google Scholar 

  • Ortiz-Ferrara G, Joshi AK, Chand R, Bhatta MR, Mudwari A, Thapa DB, Sufian MA, Saikia TP, Chatrath R, Witcombe JR, Virk DS, Sharma RC (2007) Partnering with farmers to accelerate adoption of new technologies in South Asia to improve wheat productivity. Euphytica 157:399–407

    Article  Google Scholar 

  • Ouyang YW, Hu CC, Chuang CC, Tseng CC (1973) Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro. Sci Sin 16:79–95

    Google Scholar 

  • Pande A, Rawat M, Nayan R, Guru SK, Arora S (2015) Nanotechnological interventions for mitigating global warming. In: Rakesh SS, Sengar K (eds) Climate change effect on crop productivity. CRC Press, Taylor & Francis Group, Boca Raton/London/New York, pp. 143–158

    Google Scholar 

  • Patade VY, Bhargava S, Suprasanna P (2011) Transcript expression profiling of stress responsive genes in response to short-term salt or PEG stress in sugarcane leaves. Mol Biol Rep 39:3311–3318

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Tanksley SD, Sorrels ME (1991) DNA markers in plant improvement. Adv Agron 46:39–90

    Article  CAS  Google Scholar 

  • Peleg Z, Fahima T, Abbo S, Krugman T, Nevo E, Yakir D, Saranga Y (2005) Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell Environ 28:176–191

    Article  Google Scholar 

  • Pena RJ, Amaya A, Rajaram S, Mujeeb-Kazi A (1990) Variation in quality characteristics associated with some spring 1B/1R translocation wheats. J Cereal Sci 12:105–112

    Article  Google Scholar 

  • Pflüger LA, D’Ovidio R, Margiotta B, Peña R, Mujeeb-Kazi A, Lafiandra D (2001) Characterisation of high- and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theor Appl Genet 103:1293–1301

    Article  Google Scholar 

  • Podlich DW, Cooper M (1998) QU-GENE: a simulation platform for quantitative analysis of genetic models. Bioinformatics 14:632–653

    Article  CAS  PubMed  Google Scholar 

  • Pollak LM, Corbett JD (1993) Using GIS datasets to classify maize growing regions in Mexico and Central America. Agron J 85:1133–1139

    Article  Google Scholar 

  • Pratap A, Gurdeep SS, Harinder K, Chaudhary HK (2006) Relative efficiency of anther culture and chromosome elimination techniques for haploid induction in triticale × wheat and triticale × triticale hybrids. Euphytica 150:339–345

    Article  CAS  Google Scholar 

  • Pukhalskiy VA, Bilinskaya EN (1998) Distribution of hybrid necrosis genes in winter wheat genotypes. Annu Wheat Newsl 44:191–193

    Google Scholar 

  • Pukhalskiy VA, Martynov SP, Dobrotvorskaya TV (2000) Analysis of geographical and breeding-related distribution of hybrid necrosis genes in bread wheat (Triticum aestivum L.). Euphytica 114:233–240

    Article  CAS  Google Scholar 

  • Qi LL, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19

    Article  CAS  PubMed  Google Scholar 

  • Rajaram S (2001) Prospects and promise of wheat breeding in the 21st century. Euphytica119:3–15

    Google Scholar 

  • Reed SM (2005) Embryo rescue. In: Trigiano Robert N, Gray DJ (eds) Plant development and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864

    Article  CAS  PubMed  Google Scholar 

  • Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918

    Article  CAS  PubMed  Google Scholar 

  • Rizza F, Badeck FW, Cattivelli L, Li Destri Nicosia O, Di Fonzo N, Stanca AM (2004) Diversity of yield potential and actual yield in barley genotypes under rainfed and irrigated conditions. Crop Sci 44:2127–2137

    Article  Google Scholar 

  • Robin S, Pathan MS, Courtois B, Lafitte R, Carandang S, Lnceraas S, Amante M, Nguyen HT, Li Z (2003) Mapping osmotic adjustment in an advanced back-cross inbred population of rice. Theor Appl Genet 107:1288–1296

    Article  CAS  PubMed  Google Scholar 

  • Royo C, Alvaro F, Martos V, Ramdani A, Isidro J, Villegas D, Garcia del Moral LF (2007) Genetic changes in durum wheat yield components and associated traits in Italian and Spanish varieties during the 20th century. Euphytica 155:259–270

    Article  Google Scholar 

  • Ryan J, Singh M, Pala M (2008) Long-term cereal-based rotation trials in the Mediterranean region: implications for cropping sustainability. Adv Agron 97:273–319

    Article  CAS  Google Scholar 

  • Saindon G, Schaalje GB (1993) Evaluation of locations for testing dry bean cultivars in western Canada using statistical procedures, biological interpretation and multiple traits. Can J Plant Sci 73:985–994

    Article  Google Scholar 

  • Salvi S, Porfiri O, Ceccarelli S (2013) Nazareno Strampelli, the ‘Prophet’ of the Green Revolution. J Agri Sci Cambridge 151:1–5

    Article  Google Scholar 

  • Sanguineti MC, Tuberosa R, Landi P, Salvi S, Macaferri M, Casarini E, Conti S (1999) QTL analysis of drought related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J Exp Bot 50:1289–1297

    Article  CAS  Google Scholar 

  • Saranga Y, Jiang C-X, Wright RJ, Yakir D, Paterson AH (2004) Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environ 27:263–277

    Article  CAS  Google Scholar 

  • Schaeffer GW, Baenziger PS, Worley J (1979) Haploid plant development from anthers and in vitro embryo culture of wheat. Crop Sci 19:697–702

    Article  Google Scholar 

  • Schreinemachers P, Wu MH, Ebert AW (2014) Costing the ex situ conservation of plant genetic resources at AVRDC – The World Vegetable Center. Genet Res Crop Evol 61:757–773

    Article  Google Scholar 

  • Seif E, Evans JC, Balaam LN (1979) A multivariate procedure for classifying environments according to their interaction with genotypes. Aus J Agric Res 30:1021–1026

    Article  Google Scholar 

  • Sharma HC, Sujana G, Rao DM (2009) Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Springer, SBM, Dordrecht, Netherlands. Arthropod Plant Interact 3:151–161

    Article  Google Scholar 

  • Sharma HC, Gill BS (1983) New hybrids between Agropyron and wheat. 2. Production, morphology and cytogenetic analysis of F1 hybrids and backcross derivatives. Theor Appl Genet 66:111–121

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Upadhyaya HD, Roorkiwal M, Varshney RK, Gowda CLL (2013) Chickpea. In: Singh M, Upadhyaya HD, Bisht IS (eds) Genetic and genomic resources of grain legume improvement. Elsevier Inc, London/Waltham, pp. 81–104

    Chapter  Google Scholar 

  • Shen B, Zhang JY, Zhang KQ, Dai WM, Lu Y, Fu LQ, Ding JM, Zheng KL (2007) QTL mapping of chlorophyll contents in rice. Agri Sci China 6:17–24

    Article  CAS  Google Scholar 

  • Siddiqi EH, Ashraf M, Hussain M, Jamil A (2009) Assessment of inter-cultivar variation for salt tolerance in safflower (Carthamus tinctorius L.) using gas exchange characteristics as selection criteria. Pak J Bot 41:2251–2259

    CAS  Google Scholar 

  • Sinclair TR, Vadez V (2012) The future of grain legumes in cropping systems. Crop Pasture Sci 63:501–512

    Article  Google Scholar 

  • Singh RP, Singh I, Chowdhury RK (1989) Hybrid necrosis in bread wheat. Wheat Inf Serv 68:6–8

    Google Scholar 

  • Slafer GA, Laraus J, Royo C, Garcia del Moral LF (2005) Promising ecophysiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann Appl Biol 146:61–70

    Article  Google Scholar 

  • Slafer GA, Satorre EH, Andrade FH (1994) Increases in grain yield in bread wheat from breeding and associated physiological changes. In: Slafer GA (ed) Genetic Improvement of Field Crops. Marcel Dekker, Inc., New York

    Google Scholar 

  • Smale M (1996) Understanding Global Trends in the Use of Wheat Diversity and International Flows of Wheat Genetic Resources. Economics Working Paper 96-02. Mexico, D.F.: CIMMYT

    Google Scholar 

  • Smale M, Reynolds MP, Warburton M, Skovmand B, Trethowan R, Singh RP, Ortiz-Monasterio I, Crossa J (2002) Dimensions of diversity in modern spring bread wheat in developing countries from 1965. Crop Sci 42:1766–1779

    Article  Google Scholar 

  • Snape JW, Chapman V, Moss JP, Blanchard CE, Miller TE (1979) The crossabilities of wheat varieties with Hordeum bulbosum. Heredity 42:291–298

    Article  Google Scholar 

  • Snapp S (1999) Mother and baby trials: a novel trial design being tried out in Malawi. In TARGET. The Newsletter of the Soil Fertility Research Network for Maize-Based Cropping Systems in Malawi and Zimbabwe, CIMMYT, Harare, Zimbabwe (January 1999 issue)

    Google Scholar 

  • Sohail Q, Inoue T, Tanaka H, Eltayeb AE, Matsuoka Y, Tsujimoto H (2011) Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breed Sci 61:347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohail Q, Shehzad T, Kilian A, Eltayeb AE, Tanaka H, Tsujimoto H (2012) Development of diversity array technology (DArT) markers for assessment of population structure and diversity in Aegilops tauschii. Breed Sci 62:38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Stamp P, Messmer R, Walter A (2012) Competitive underutilized crops will depend on the state funding of breeding programmes: an opinion on the example of Europe. Plant Breed 131:461–464

    Article  Google Scholar 

  • Sujana G, Sharma HC, Rao DM (2008) Antixenosis and antibio- sis components of resistance to pod borer Helicoverpa armigera in wild relatives of pigeonpea. Int J Trop Insect Sci 28:191–200

    Google Scholar 

  • Tai GCC (1971) Genotypic stability analysis and its application to potato regional trials. Crop Sci 11:184–190

    Article  Google Scholar 

  • Tambussi E, Nogues S, Ferrio P, Voltas J, Araus JL (2005) Does higher yield potential improve barley performance in Mediterranean conditions? A case study. Field Crops Res 91:149–160

    Article  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tawkaz S (2011) Response of Ssme wheat genotypes to anther culture technique for doubled haploid production. M.Sc thesis. Sudan Academy of Science, Kartum

    Google Scholar 

  • Thakur A (2004) Use of easy and less expensive methodology to rapidly screen fruit crops for drought tolerance. Acta Hort 662:231–235

    Article  Google Scholar 

  • Thapa DB, Sharma RC, Mudwari A, Ortiz-Ferrara G, Sharma S, Basnet RK, Witcombe JR, Virk DS, Joshi KD (2009) Identifying superior wheat cultivars in participatory research on resource poor farms. Field Crops Res 112:124–130

    Article  Google Scholar 

  • Tomar SMS, Kochumadhavan M, Nambisan PNN (1991) Hybrid weakness in Triticum dicoccum Schubl. Wheat Inf Serv 72:9–11

    Google Scholar 

  • Tomar SMS, Singh B (1998) Hybrid chlorosis in wheat × rye crosses. Euphytica 99:1–4

    Article  Google Scholar 

  • Trethowan RM, van Ginkel M (2009) Synthetic wheat-An Emerging Genetic Resource. In: Carver BF (ed) Wheat science and trade. Wiley-Blackwell, Ames

    Google Scholar 

  • Trethowan RM, van Ginkel M, Rajaram S (2002) Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Sci 42:1441–1446

    Article  Google Scholar 

  • Upadhyaya HD, Sharma S, Dwivedi SL (2012) Arachis. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, legume crops and forages. Springer, Berlin/Heidelberg, pp 1–19

    Google Scholar 

  • Upadhyaya HD, Sharma S, Reddy KN, Saxena R, Varshney RK, Gowda CLL (2013) “Pigeonpea,” In: Singh M, Upadhyaya HD, Bisht IS (eds) Genetic and Genomic Resources of Grain Legume Improvement. London; Waltham, MA: Elsevier Inc, pp 181–198

    Google Scholar 

  • Van Becelaere G, Lubbers EL, Paterson AH, Chee PW (2005) Pedigree- vs. DNA marker-based genetic similarity estimates in cotton. Crop Sci 45:2281–2287

    Article  CAS  Google Scholar 

  • van Eeuwijk FA, Denis JB, Kang MS (1996) Incorporating additional information on genotypes and environments in models for two-way genotype by environment tables. In: Kang MS, Gauch HG (eds) Genotype-by-environment interaction. CRC Press, Boca Raton, pp. 15–49

    Chapter  Google Scholar 

  • van Eeuwijk FA, Malosetti M, Yin X, Struik PC, Stam P (2005) Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models. Aust J Agric Res 56:1–12

    Article  Google Scholar 

  • Villareal RL, Singh RP, Mujeeb-Kazi A (1992) Expression of resistance to Puccinia recondita f.sp. tritici in synthetic hexaploid wheats. Vortr Pflanzenzuchtg 24:253–255

    Google Scholar 

  • Wang XS, Zhu J, Mansueto L, Bruskiewich R (2005) Identification of candidate genes for drought stress to lerance in rice by the integration of a genetic (QTL) map with the rice genome physical map. J Zhejiang Univ Sci 6:382–388

    Article  CAS  Google Scholar 

  • Wei ZM (1982) Pollen callus culture in Triticum aestivum. Theor Appl Genet 67:71–73

    Article  Google Scholar 

  • West JD, Peak D, Peterson JQ, Mott KA (2005) Dynamics of stomatal patches for a single surface of Xanthium strumarium L. leaves observed with fluorescence and thermal images. Plant Cell Environ 28:633–641

    Article  Google Scholar 

  • Witcombe JR, Joshi A, Goyal SN (2003) Participatory plant breeding in maize: A case study from Gujarat, India. Euphytica 130:413–422

    Article  Google Scholar 

  • Worland AJ, Snape JW (2001) Genetic basis of worldwide wheat varietal improvement. In: Bonjean AP, Angus WJ (eds) The World Wheat Book: a History of Wheat Breeding. Lavoisier Publishing, Paris

    Google Scholar 

  • Xiao YN, Li XH, George ML, Li MS, Zhang SH, Zheng YL (2005) Quantitative trait locus analysis of drought tolerance and yield in maize in China. Plant Mol Biol Rep 23:155–165

    Article  CAS  Google Scholar 

  • Xie WL, Nevo E (2008) Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164:603–614

    Article  Google Scholar 

  • Xu JL, Lafitte HR, Gao YM, Fu BY, Torres R, Li ZK (2005) QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet 111:1642–1650

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Hunt LA, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Sci 40:597–605

    Article  Google Scholar 

  • Yan W, Kang MS (2003) GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton

    Google Scholar 

  • Yang N, Smale M (1996) Indicators of Wheat Genetic Diversity and Germplasm Use in the People’s Republic of China. NRG Paper 96-04. CIMMYT, Mexico, D.F.

    Google Scholar 

  • Yates F, Cochran WG (1938) The analysis of groups of experiments. J Agri Sci 28:556–580

    Article  Google Scholar 

  • Yediay FE, Baloch FS, Kilian B, Ozkan H (2010) Testing of rye-specific markers located on 1RS chromosome and distribution of 1AL. RS and 1BL. RS translocations in Turkish wheat (Triticum aestivum L., T. durum Desf.)

    Google Scholar 

  • Young ND, Tanksley SD (1989) RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theoret Appl Genet 77:353–359

    Article  CAS  Google Scholar 

  • Yue B, Xue WJ, Xiong LZ, Yu XQ, Luo LJ, Cui KH, Jin DM, Xing YZ, Zhang QF (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172:1215–1228

    Google Scholar 

  • Zaharieva M, Monneveux P, Henry M, Rivoal R, Valkoun J, Nachit MM (2001) Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits. Euphytica 119:33–38

    Article  Google Scholar 

  • Zeven AC (1981) Eighth supplementary list of wheat varieties classified according to their genotypes for hybrid necrosis. Euphytica 30:521–539

    Article  Google Scholar 

  • Zhu L, Liang ZS, Xu X, Li SH, Monneveux P (2009) Evidences for the association between carbon isotope discrimination and grain yield—Ash content and stem carbohydrate in spring wheat grown in Ningxia (Northwest China). Plant Sci 176:758–767

    Article  CAS  Google Scholar 

  • Zobel RW, Wright MG, Gauch HG (1988) Statistical analysis of yield trial. Agron J 80:388–393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quahir Sohail or Reza Mohammadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Sohail, Q., Naheed, H., Mohammadi, R. (2016). Breeding and Genetic Enhancement of Dryland Crops. In: Farooq, M., Siddique, K. (eds) Innovations in Dryland Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-47928-6_10

Download citation

Publish with us

Policies and ethics