Skip to main content

Molecular Genetic and Epigenetic Basis of Multiple Sclerosis

  • Chapter
  • First Online:
Multiple Sclerosis: Bench to Bedside

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 958))

Abstract

Multiple Sclerosis (MS) is a chronic immune-mediated disease of spinal cord and brain. The initial event in MS occurs when activated CD4+ T cells in periphery exacerbates immune responses by stimulating immune cells such as B cells, CD8+ cells, mast cells, granulocytes and monocytes. These proinflammatory cells pass blood brain barrier by secreting proinflammatory cytokines including TNF-α and INF-γ which activate adhesion factors. APCs (antigen-presenting cells) reactivate CD4+ T cells after infiltrating the CNS and CD4+ T cells produce cytokines and chemokines. These proinflammatory cytokines aggravate inflammation by inducing myelin phagocytosis through microglia and astrocytes activation. MS is believed to have a multifactorial origin that includes a combination of multiple genetic, environmental and stochastic factors. Although the exact component of MS risks that can be explained by these factors is difficult to determine, estimates based on genetic and epidemiological studies suggest that up to 60–70 % of the total risk of MS may be contribute to genetic factors. In continue, firstly we provide an overview of the current understanding of epigenetic mechanisms, and so present evidence of how the epigenetic modifications contribute to increased susceptibility of MS. We also explain how specified epigenetic modifications may influence the pathophysiology and key aspects of disease in MS (demyelination, remyelination, inflammation, and neurodegeneration). Finally, we tend to discuss how environmental factors and epigenetic mechanisms may interact to have an effect on MS risk and clinical outcome and recommend new therapeutic interventions that might modulate patients’ epigenetic profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aicher A, Shu GL, Magaletti D et al (1999) Differential role for p38 mitogen-activated protein kinase in regulating CD40-induced gene expression in dendritic cells and B cells. J Immunol 163(11):5786–5795

    CAS  PubMed  Google Scholar 

  • Allione A, Marcon F, Fiorito G et al (2015) Novel epigenetic changes unveiled by monozygotic twins discordant for smoking habits. PloS one 10(6):e0128265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ascherio A, Munger KL (2007) Environmental risk factors for multiple sclerosis. Part II: noninfectious factors. Ann Neurol 61(6):504–513

    Article  CAS  PubMed  Google Scholar 

  • Ascherio A, Munger KL, Lennette ET et al (2001) Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286(24):3083–3088

    Article  CAS  PubMed  Google Scholar 

  • Ascherio A, Munger KL, Lünemann JD (2012) The initiation and prevention of multiple sclerosis. Nat Rev Neurol 8(11):602–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azim K, Butt AM (2011) GSK3β negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia 59(4):540–553

    Article  PubMed  Google Scholar 

  • Ban M, Booth D, Heard R et al (2006) Linkage disequilibrium screening for multiple sclerosis implicates JAG1 and POU2AF1 as susceptibility genes in Europeans. J Neuroimmunol 179(1):108–116

    PubMed  Google Scholar 

  • Ban J, Jug G, Mestdagh P et al (2011) Hsa-mir-145 is the top EWS-FLI1-repressed microRNA involved in a positive feedback loop in Ewing’s sarcoma. Oncogene 30(18):2173–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranzini SE, Galwey NW, Wang J et al (2009) Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet 18(11):2078–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranzini SE, Mudge J, van Velkinburgh JC et al (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464(7293):1351–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Bejsovec A (2005) Wnt pathway activation: new relations and locations. Cell 120(1):11–14

    CAS  PubMed  Google Scholar 

  • Berenson LS, Yang J, Sleckman BP, Murphy TL, Murphy KM (2006) Selective requirement of p38α MAPK in cytokine-dependent, but not antigen receptor-dependent, Th1 responses. J Immunol 176(8):4616–4621

    Article  CAS  PubMed  Google Scholar 

  • Bhat R, Steinman L (2009) Innate and adaptive autoimmunity directed to the central nervous system. Neuron 64(1):123–132

    Article  CAS  PubMed  Google Scholar 

  • Bray SJ (2006) Notch signaling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9):678–689

    Article  CAS  PubMed  Google Scholar 

  • Breitling LP (2013) Current genetics and epigenetics of smoking/tobacco-related cardiovascular disease. Arterioscler Thromb Vasc Biol 33(7):1468–1472

    Article  CAS  PubMed  Google Scholar 

  • Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H (2011) Tobacco-smoking-related differential DNA methylation: 27 K discovery and replication. Am J Hum Genet 88(4):450–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camandola S, Mattson MP (2007) NF-κB as a therapeutic target in neurodegenerative diseases. Expert Opin Ther Targets 11(2):123–132

    Article  CAS  PubMed  Google Scholar 

  • Camelo S, Iglesias AH, Hwang D et al (2005) Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 164(1):10–21

    Article  CAS  PubMed  Google Scholar 

  • Chang TC, Mendell JT (2007) microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 8:215–239

    Article  CAS  PubMed  Google Scholar 

  • Chari DM (2007) Remyelination in multiple sclerosis. Int Rev Neurobiol 79:589–620

    Article  CAS  PubMed  Google Scholar 

  • Chen HL, Chew LJ, Packer RJ, Gallo V (2013) Modulation of the Wnt/beta-catenin pathway in human oligodendroglioma cells by Sox17 regulates proliferation and differentiation. Cancer Lett 335(2):361–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31(46):16619–16636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho WC, Chow AS, Au JS (2011) MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1.RNA. Biol 8(1):125–131

    CAS  Google Scholar 

  • Copray S, Huynh JL, Sher F, Casaccia-Bonnefil P, Boddeke E (2009) Epigenetic mechanisms facilitating oligodendrocyte development, maturation, and aging. Glia 57(15):1579–1587

    Article  PubMed  PubMed Central  Google Scholar 

  • Dash PK, Orsi SA, Moore AN (2009) Histone deactylase inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury. Neuroscience 163(1):1–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Jager PL, Jia X, Wang J et al (2009) Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 41(7):776–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieker J, Muller S (2010) Epigenetic histone code and autoimmunity. Clin Rev Allergy Immunol 39(1):78–84

    Article  CAS  PubMed  Google Scholar 

  • Du C, Liu C, Kang J et al (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10(12):1252–1259

    Article  CAS  PubMed  Google Scholar 

  • Dugas JC, Cuellar TL, Scholze A et al (2010) Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron 65(5):597–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmanouil M, Taoufik E, Tseveleki V, Vamvakas SS, Probert L (2011) A role for neuronal NF-κB in suppressing neuroinflammation and promoting neuroprotection in the CNS. In: Advances in TNF family research. Springer, New York, pp 575–581

    Chapter  Google Scholar 

  • Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874

    Article  CAS  PubMed  Google Scholar 

  • Fancy SP, Baranzini SE, Zhao C et al (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23(13):1571–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feigenson K, Reid M, See J, Crenshaw EB, Grinspan JB (2011) Canonical Wnt signalling requires the BMP pathway to inhibit oligodendrocyte maturation. ASN Neuro 3(3):AN20110004

    Article  CAS  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440

    Article  CAS  PubMed  Google Scholar 

  • Fetahu IS, Höbaus J, Kállay E (2014) Vitamin D and the epigenome. Genome-wide View Physiol Vitam D 61

    Google Scholar 

  • Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M (2011) Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating β-catenin. Proc Natl Acad Sci U S A 108(5):1937–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447(7141):178–182

    Article  CAS  PubMed  Google Scholar 

  • Fleming RJ (1998) Structural conservation of Notch receptors and ligands. Semin Cell Dev Biol 9(6):599–607. Academic Press

    Google Scholar 

  • Fortin CF, Cloutier A, Ear T et al (2011) A class IA PI3K controls inflammatory cytokine production in human neutrophils. Eur J Immunol 41(6):1709–1719

    Article  CAS  PubMed  Google Scholar 

  • Frisullo G, Angelucci F, Caggiula M et al (2006) pSTAT1, pSTAT3, and T-bet expression in peripheral blood mononuclear cells from relapsing-remitting multiple sclerosis patients correlates with disease activity. J Neurosci Res 84(5):1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327(5966):656–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilli F, Navone ND, Perga S et al (2011) Loss of braking signals during inflammation: a factor affecting the development and disease course of multiple sclerosis. Arch Neurol 68(7):879–888

    Article  PubMed  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  CAS  PubMed  Google Scholar 

  • Goodin DS (2014) The epidemiology of multiple sclerosis: insights to disease pathogenesis. In: DS G (ed) Handbook of clinical neurology, Multiple sclerosis and related disorders, vol 122. Elsevier B. V, Amsterdam, pp 231–266

    Google Scholar 

  • Gourraud PA, Harbo HF, Hauser SL, Baranzini SE (2012) The genetics of multiple sclerosis: an up-to-date review. Immunol Rev 248:87–103

    Article  PubMed  Google Scholar 

  • Guerau-de-Arellano M, Smith KM, Godlewski J et al (2011) Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity. Brain 134(12):3578–3589

    Article  PubMed  Google Scholar 

  • Gupta SC, Sundaram C, Reuter S, Aggarwal BB (2010) Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta-Gene Regul Mech 1799(10):775–787

    Article  CAS  Google Scholar 

  • Gveric D, Kaltschmidt C, Cuzner ML, Newcombe J (1998) Transcription factor NF-kB and inhibitor kB [alpha] are localized in macrophages in active multiple sclerosis lesions. J Neuropathol Exp Neurol 57(2):168–169

    Article  CAS  PubMed  Google Scholar 

  • Han L, Witmer PDW, Casey E, Valle D, Sukumar S (2007) DNA methylation regulates microRNA expression. Cancer Biol Ther 6(8):1290–1294

    Article  Google Scholar 

  • Handel AE, Williamson AJ, Disanto G, Handunnetthi L, Giovannoni G, Ramagopalan SV (2010) An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One 5(9):e12496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harauz G, Ishiyama N, Hill CM, Bates IR, Libich DS, Farès C (2004) Myelin basic protein—diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 35(7):503–542

    Article  CAS  PubMed  Google Scholar 

  • Harris TJ, Grosso JF, Yen HR et al (2007) Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol 179(7):4313–4317

    Article  CAS  PubMed  Google Scholar 

  • Hawkes CH, Macgregor AJ (2009) Twin studies and the heritability of MS: a conclusion. Mult Scler 15(6):661–667

    Article  CAS  PubMed  Google Scholar 

  • Hawkins PT, Stephens LR (2015) PI3K signaling in inflammation. Biochim Biophys Acta, Mol Cell Biol Lipids 1851(6):882–897

    Article  CAS  Google Scholar 

  • He Y, Dupree J, Wang J et al (2007) The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 55(2):217–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80

    Article  PubMed  Google Scholar 

  • Huynh JL, Casaccia P (2013) Epigenetic mechanisms in multiple sclerosis: implications for pathogenesis and treatment. Lancet Neurol 12:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihle JN (2001) The Stat family in cytokine signaling. Curr Opin Cell Biol 13(2):211–217

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Lim S, Caramori G, Chung KF, Barnes PJ, Adcock IM (2001) Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 15(6):1110–1112

    CAS  PubMed  Google Scholar 

  • John GR, Shankar SL, Shafit-Zagardo B et al (2002) Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 8(10):1115–1121

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Pantalena LC, Liu XK et al (2011) 1, 25-Dihydroxyvitamin D3 ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol 31(17):3653–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junker A, Krumbholz M, Eisele S et al (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132(12):3342–3352

    Article  PubMed  Google Scholar 

  • Juryńczyk M, Selmaj K (2010) Notch: a new player in MS mechanisms. J Neuroimmunol 218(1):3–11

    Article  PubMed  CAS  Google Scholar 

  • Kalani MYS, Cheshier SH, Cord BJ et al (2008) Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci U S A 105(44):16970–16975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaltschmidt C, Kaltschmidt B, Neumann H, Wekerle H, Baeuerle PA (1994) Constitutive NF-kappa B activity in neurons. Mol Cell Biol 14(6):3981–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller A, Leidinger P, Lange J et al (2009) Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One 4(10):e7440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kikuchi K, Yanagawa Y, Iwabuchi K, Onoé K (2003) Differential role of mitogen-activated protein kinases in CD40-mediated IL-12 production by immature and mature dendritic cells. Immunol Lett 89(2):149–154

    Article  CAS  PubMed  Google Scholar 

  • Kilgore M, Miller CA, Fass DM et al (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacol 35(4):870–880

    Article  CAS  Google Scholar 

  • Kim JY, Shen S, Dietz K et al (2010) HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 13(2):180–189

    Article  PubMed  CAS  Google Scholar 

  • Klinke O, Feederle R, Delecluse HJ (2014) Genetics of Epstein–Barr virus microRNAs. Semin Cancer Biol 26:52–59

    Article  CAS  PubMed  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Koch MW, Metz LM, Kovalchuk O (2013) Epigenetics and miRNAs in the diagnosis and treatment of multiple sclerosis. Trends Mol Med 19(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Koorella C, Nair JR, Murray ME, Carlson LM, Watkins SK, Lee KP (2014) Novel regulation of CD80/CD86-induced phosphatidylinositol 3-kinase signaling by NOTCH1 protein in interleukin-6 and indoleamine 2, 3-dioxygenase production by dendritic cells. J Biol Chem 289(11):7747–7762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Kumagai C, Kalman B, Middleton FA, Vyshkina T, Massa PT (2012) Increased promoter methylation of the immune regulatory gene SHP-1 in leukocytes of multiple sclerosis subjects. J Neuroimmunol 246(1):51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kürtüncü M, Tüzün E (2008) Multiple sclerosis: could it be an epigenetic disease? Med Hypotheses 71(6):945–947

    Article  PubMed  CAS  Google Scholar 

  • Kwong J, Lo KW, To KF, Teo PM, Johnson PJ, Huang DP (2002) Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin Cancer Res 8(1):131–137

    CAS  PubMed  Google Scholar 

  • Lang J, Maeda Y, Bannerman P et al (2013) Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci 33(7):3113–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279(39):40545–40559

    Article  CAS  PubMed  Google Scholar 

  • Liggett T, Melnikov A, Tilwalli S et al (2010) Methylation patterns of cell-free plasma DNA in relapsing–remitting multiple sclerosis. J Neurol Sci 290(1):16–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindberg RL, Hoffmann F, Mehling M, Kuhle J, Kappos L (2010) Altered expression of miR-17-5p in CD4+ lymphocytes of relapsing–remitting multiple sclerosis patients. Eur J Immunol 40(3):888–898

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lan Q, Siegfried JM, Luketich JD, Keohavong P (2006) Aberrant promoter methylation of p16 and MGMT genes in lung tumors from smoking and never-smoking lung cancer patients. Neoplasia 8(1):46–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Ouyang X, Yang J et al (2009) AP-1 activated by toll-like receptors regulates expression of IL-23 p19. J Biol Chem 284(36):24006–24016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Sandoval J, Doh ST, Cai L, López-Rodas G, Casaccia P (2010) Epigenetic modifiers are necessary but not sufficient for reprogramming non-myelinating cells into myelin gene-expressing cells. PLoS One 5(9):e13023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Holdbrooks AT, De Sarno P et al (2014) Therapeutic efficacy of suppressing the Jak/STAT pathway in multiple models of experimental autoimmune encephalomyelitis. J Immunol 192(1):59–72

    Article  CAS  PubMed  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  • Ma YT, Collins SI, Young LS, Murray PG, Woodman CB (2011) Smoking initiation is followed by the early acquisition of epigenetic change in cervical epithelium: a longitudinal study. Br J Cancer 104(9):1500–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ (2010) Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 5(7):583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Husstege M, Muggironi M, Liu A, Casaccia-Bonnefil P (2002) Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J Neurosci 22(23):10333–10345

    CAS  PubMed  Google Scholar 

  • Mastronardi FG, Wood DD, Mei J et al (2006) Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J Neurosci 26(44):11387–11396

    Article  CAS  PubMed  Google Scholar 

  • Mastronardi FG, Noor A, Wood DD, Paton T, Moscarello MA (2007) Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J Neurosci Res 85(9):2006–2016

    Article  CAS  PubMed  Google Scholar 

  • McFarland BC, Hong SW, Rajbhandari R et al (2013) NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PloS One 8(11):e78728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miklossy G, Hilliard TS, Turkson J (2013) Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov 12(8):611–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minter LM, Turley DM, Das P et al (2005) Inhibitors of-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat Immunol 6(7):680–688

    Article  CAS  PubMed  Google Scholar 

  • Miterski B, Böhringer S, Klein W et al (2002) Inhibitors in the NFκB cascade comprise prime candidate genes predisposing to multiple sclerosis, especially in selected combinations. Genes Immun 3(4):211–219

    Article  CAS  PubMed  Google Scholar 

  • Moscarello MA, Wood DD, Ackerley C, Boulias C (1994) Myelin in multiple sclerosis is developmentally immature. J Clin Investig 94(1):146–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A (2006) Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296(23):2832–2838

    Article  CAS  PubMed  Google Scholar 

  • Murugaiyan G, Beynon V, Mittal A, Joller N, Weiner HL (2011) Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J Immunol 187:2213–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musse AA, Harauz G (2007) Molecular “negativity” may underlie multiple sclerosis: role of the myelin basic protein family in the pathogenesis of MS. Int Rev Neurobiol 79:149–172

    Article  CAS  PubMed  Google Scholar 

  • Nakahara J, Kanekura K, Nawa M, Aiso S, Suzuki N (2009) Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis. J Clin Invest 119(1):169–181

    CAS  PubMed  Google Scholar 

  • Niller HH, Wolf H, Minarovits J (2009) Epigenetic dysregulation of the host cell genome in Epstein–Barr virus-associated neoplasia. Semin Cancer Biol 19:158–164

    Article  CAS  PubMed  Google Scholar 

  • Noorbakhsh F, Ellestad KK, Maingat F et al (2011) Impaired neurosteroid synthesis in multiple sclerosis. Brain 134(9):2703–2721

    Article  PubMed  PubMed Central  Google Scholar 

  • Noubade R, Milligan G, Zachary JF et al (2007) Histamine receptor H 1 is required for TCR-mediated p38 MAPK activation and optimal IFN-γ production in mice. J Clin Invest 117(11):3507–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noubade R, Krementsov DN, del Rio R et al (2011) Activation of p38 MAPK in CD4 T cells controls IL-17 production and autoimmune encephalomyelitis. Blood 118(12):3290–3300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connell RM, Kahn D, Gibson WS et al (2010) MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33(4):607–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Shea JJ, Plenge R (2012) JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36(4):542–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Shea JJ, Pesu M, Borie DC, Changelian PS (2004) A new modality for immunosuppression: targeting the JAK/STAT pathway. Nat Rev Drug Discov 3(7):555–564

    Article  PubMed  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  PubMed  Google Scholar 

  • Okkenhaug K (2013) Signalling by the phosphoinositide 3-kinase family in immune cells. Annu Rev Immunol 31:675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orabona C, Grohmann U, Belladonna ML et al (2004) CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat Immunol 5(11):1134–1142

    Article  CAS  PubMed  Google Scholar 

  • Ortega F, Gascón S, Masserdotti G et al (2013) Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol 15(6):602–613

    Article  CAS  PubMed  Google Scholar 

  • Otaegui D, Baranzini SE, Armañanzas R et al (2009) Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS One 4(7):e6309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paraboschi EM, Soldà G, Gemmati D et al (2011) Genetic association and altered gene expression of mir-155 in multiple sclerosis patients. Int J Mol Sci 12(12):8695–8712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patsopoulos NA, de Bakker PI (2011) Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann Neurol 70(6):897–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauley KM, Cha S, Chan EK (2009) MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 32(3):189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedre X, Mastronardi F, Bruck W, López-Rodas G, Kuhlmann T, Casaccia P (2011) Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions. J Neurosci 31(9):3435–3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg S, Sananbenesi F, Zovoilis A et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328(5979):753–756

    Article  CAS  PubMed  Google Scholar 

  • Pizzi M, Goffi F, Boroni F et al (2002) Opposing roles for NF-κB/Rel factors p65 and c-Rel in the modulation of neuron survival elicited by glutamate and interleukin-1β. J Biol Chem 277(23):20717–20723

    Article  CAS  PubMed  Google Scholar 

  • Pritzker LB, Joshi S, Gowan JJ, Harauz G, Moscarello MA (2000) Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry 39(18):5374–5381

    Article  CAS  PubMed  Google Scholar 

  • Qureshi IA, Mehler MF (2012) Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 13(8):528–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radtke F, MacDonald HR, Tacchini-Cottier F (2013) Regulation of innate and adaptive immunity by Notch. Nat Rev Immunol 13(6):427–437

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM (2009) Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity 31(5):711–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB, Steitz JA (2012) EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 31(9):2207–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rincón M, Davis RJ (2009) Regulation of the immune response by stress-activated protein kinases. Immunol Rev 228(1):212–224

    Article  PubMed  Google Scholar 

  • Rincón M, Enslen H, Raingeaud J et al (1998) Interferon-γ expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway. EMBO J 17(10):2817–2829

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarnico I, Lanzillotta A, Benarese M et al (2009) NF-KappaB dimers in the regulation of neuronal survival. Int Rev Neurobiol 85:351–362

    Article  CAS  PubMed  Google Scholar 

  • Satoh JI, Misawa T, Tabunoki H, Yamamura T (2008) Molecular network analysis of T-cell transcriptome suggests aberrant regulation of gene expression by NF-κB as a biomarker for relapse of multiple sclerosis. Dis Markers 25(1):27–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawcer S, Hellenthal G, Pirinen M et al (2011) Genetic risk and a primary role for cell- mediated immune mechanisms in multiple sclerosis. Nature 476:214–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevignani C, Calin GA, Siracusa LD, Croce CM (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17(3):189–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanshiashvili LV, Kalandadze IV, Ramsden JJ, Mikeladze DG (2012) Adhesive properties and inflammatory potential of citrullinated myelin basic protein Peptide 45–89. Neurochem Res 37(9):1959–1966

    Article  CAS  PubMed  Google Scholar 

  • Shen S, Li J, Casaccia-Bonnefil P (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 169(4):577–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S, Sandoval J, Swiss VA, Li J, Dupree J, Franklin RJ, Casaccia-Bonnefil P (2008) Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 11(9):1024–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin HM, Minter LM, Cho OH et al (2006) Notch1 augments NF-κB activity by facilitating its nuclear retention. EMBO J 25(1):129–138

    Article  CAS  PubMed  Google Scholar 

  • Shin D, Shin JY, McManus MT, Ptáček LJ, Fu YH (2009) Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol 66(6):843–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson S, Taylor B, Blizzard L et al (2010) Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann Neurol 68(2):193–203

    CAS  PubMed  Google Scholar 

  • Smolders J, Menheere P, Kessels A, Damoiseaux J, Hupperts R (2008) Association of vitamin D metabolite levels with relapse rate and disability in multiple sclerosis. Mult Scler 14:1220–1224

    Article  CAS  PubMed  Google Scholar 

  • Smolders J, Peelen E, Thewissen M et al (2010) Safety and T cell modulating effects of high dose vitamin D 3 supplementation in multiple sclerosis. PLoS One 5(12):e15235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Søndergaard HB, Hesse D, Krakauer M, Sørensen PS, Sellebjerg F (2013) Differential microRNA expression in blood in multiple sclerosis. Mult Scler 19(14):1849–1857

    Article  PubMed  CAS  Google Scholar 

  • Soond DR, Bjørgo E, Moltu K et al (2010) PI3K p110δ regulates T-cell cytokine production during primary and secondary immune responses in mice and humans. Blood 115(11):2203–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soreq H, Wolf Y (2011) NeurimmiRs: microRNAs in the neuroimmune interface. Trends Mol Med 17(10):548–555

    Article  CAS  PubMed  Google Scholar 

  • Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan M, Lahiri DK (2015) Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer’s disease and multiple sclerosis. Expert Opin Ther Targets 19(4):471–487

    Article  CAS  PubMed  Google Scholar 

  • Stark AK, Sriskantharajah S, Hessel EM, Okkenhaug K (2015) PI3K inhibitors in inflammation, autoimmunity and cancer. Curr Opin Pharmacol 23:82–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinman L (2008) A rush to judgment on Th17. J Exp Med 205:1517–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tawk M, Makoukji J, Belle M et al (2011) Wnt/β-catenin signaling is an essential and direct driver of myelin gene expression and myelinogenesis. J Neurosci 31(10):3729–3742

    Article  CAS  PubMed  Google Scholar 

  • Toledo-Rodriguez M, Lotfipour S, Leonard G et al (2010) Maternal smoking during pregnancy is associated with epigenetic modifications of the brain-derived neurotrophic factor-6 exon in adolescent offspring. Am J Med Genet B Neuropsychiatr Genet 153(7):1350–1354

    Article  CAS  Google Scholar 

  • Tremethick DJ (2007) Higher-order structures of chromatin: the elusive 30 nm fiber. Cell 128(4):651–654

    Article  CAS  PubMed  Google Scholar 

  • Tsai CN, Tsai CL, Tse KP, Chang HY, Chang YS (2002) The Epstein–Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci U S A 99(15):10084–10089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzartos JS, Friese MA, Craner MJ et al (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172(1):146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urdinguio RG, Sanchez-Mut JV, Esteller M (2009) Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 8(11):1056–1072

    Article  CAS  PubMed  Google Scholar 

  • Vandenbroeck K, Alvarez J, Swaminathan B et al (2012) A cytokine gene screen uncovers SOCS1 as genetic risk factor for multiple sclerosis. Genes Immun 13(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Sdrulla AD, diSibio G et al (1998) Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21(1):63–75

    Article  PubMed  Google Scholar 

  • Waschbisch A, Atiya M, Linker RA, Potapov S, Schwab S, Derfuss T (2011) Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PLoS One 6(9):e24604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Schübeler D (2007) Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 19(3):273–280

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Miskimins WK, Miskimins R (2005) Stage-specific expression of myelin basic protein in oligodendrocytes involves Nkx2. 2-mediated repression that is relieved by the Sp1 transcription factor. J Biol Chem 280(16):16284–16294

    Article  CAS  PubMed  Google Scholar 

  • Westerlind H, Ramanujam R, Uvehag D et al (2014) Modest familial risks for multiple sclerosis: a registry-based study of the population of Sweden. Brain 137(3):770–778

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie J, Qian J, Wang S, Freeman ME, Epstein J, Yi Q (2003) Novel and detrimental effects of lipopolysaccharide on in vitro generation of immature dendritic cells: involvement of mitogen-activated protein kinase p38. J Immunol 171(9):4792–4800

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Li Z, Zhang GX, Guan Y (2014) Wnt signaling in remyelination in multiple sclerosis: friend or foe? Mol Neurobiol 49(3):1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Ye F, Chen Y, Hoang T et al (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin–TCF interaction. Nat Neurosci 12(7):829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarubin T, Jiahuai HAN (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Rank G, Tan YT et al (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16(3):304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, He X, Han X et al (2010) MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65(5):612–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Simpson S, Holloway AF, Charlesworth J, van der Mei I, Taylor BV (2014) The potential role of epigenetic modifications in the heritability of multiple sclerosis. Mult Scler J 20(2):135–140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to sincerely appreciate Miss. Tayebe Sarbandi Farahani for her comprehensive assistance in providing the illustrations of this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Hojati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hojati, Z. (2017). Molecular Genetic and Epigenetic Basis of Multiple Sclerosis. In: Asea, A., Geraci, F., Kaur, P. (eds) Multiple Sclerosis: Bench to Bedside. Advances in Experimental Medicine and Biology, vol 958. Springer, Cham. https://doi.org/10.1007/978-3-319-47861-6_6

Download citation

Publish with us

Policies and ethics