Skip to main content

Timing of Future Remyelination Therapies and Their Potential to Stop Multiple Sclerosis Progression

  • Chapter
  • First Online:
Multiple Sclerosis: Bench to Bedside

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 958))

Abstract

Prior to the onset of demyelination in multiple sclerosis (MS), early oligodendrocyte injury, axonal degeneration and astroglial scarring occur. The irreversible progressive phase of MS begins when the axonal loss threshold is reached. Progressive disease onset has the highest impact on a poor prognosis in MS. Conversion to progressive disease is essentially an age-dependent process independent of disease duration and initial disease course. Although prevention of relapses has been the primary approach in the disease management, incomplete recovery from even the first relapse correlates with the long-term neurodegenerative phenotype of progressive MS onset. Therefore, the provider should review each patient’s potential for relapse-related disability and start DMDs with the goal of preventing relapses. Existing immunomodulatory medications used to prevent MS relapses do not prevent long-term disability, which requires agents focused on remyelination and axonal repair. If applied immediately after a relapse rather than during the progressive phase of MS, remyelination-stimulating strategies may result in full recovery and prevention of long-term neurodegeneration and progressive disease course.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACTH:

adrenocorticotropic hormone

Ca2+:

calcium

CIS:

clinically isolated syndrome

DMD:

disease-modifying drug

EAE:

experimental autoimmune encephalomyelitis

IgM:

immunoglobulin M

LINGO-1:

leucine-rich repeat neuronal protein 1

MRI:

magnetic resonance imaging

MS:

multiple sclerosis

NAbs:

naturally occurring antibodies

OPCs:

oligodendrocyte progenitor cells

PPMS:

primary progressive multiple sclerosis

RIS:

radiologically isolated syndrome

RRMS:

relapsing remitting multiple sclerosis

SAMS:

single attack multiple sclerosis

SAPMS:

single attack progressive multiple sclerosis

SPMS:

secondary progressive multiple sclerosis

References

  • Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468

    Article  PubMed  Google Scholar 

  • Blakemore WF (1974) Pattern of remyelination in the CNS. Nature 249:577–578

    Article  CAS  PubMed  Google Scholar 

  • Cannella B, Gaupp S, Omari KM, Raine CS (2007) Multiple sclerosis: death receptor expression and oligodendrocyte apoptosis in established lesions. J Neuroimmunol 188:128–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccone A, Beretta S, Brusaferri F, Galea I, Protti A, Spreafico C (2008) Corticosteroids for the long-term treatment in multiple sclerosis. Cochrane Database Syst Rev, CD006264. doi: 10.1002/14651858.CD006264.pub2

    Google Scholar 

  • Confavreux C, Vukusic S (2006) Age at disability milestones in multiple sclerosis. Brain 129:595–605

    Article  PubMed  Google Scholar 

  • Confavreux C, Aimard G, Devic M (1980) Course and prognosis of multiple sclerosis assessed by the computerized data processing of 349 patients. Brain 103:281–300

    Article  CAS  PubMed  Google Scholar 

  • Confavreux C, Vukusic S, Moreau T, Adeleine P (2000) Relapses and progression of disability in multiple sclerosis. N Engl J Med 343:1430–1438

    Article  CAS  PubMed  Google Scholar 

  • De Stefano N, Narayanan S, Francis GS, Arnaoutelis R, Tartaglia MC, Antel JP, Matthews PM, Arnold DL (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58:65–70

    Article  CAS  PubMed  Google Scholar 

  • Elkhalifa A, Weiner H (2010) Cyclophosphamide treatment of MS: current therapeutic approaches and treatment regimens. International MS J/MS Forum 17:12–18

    Google Scholar 

  • Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43:809–814

    Article  CAS  PubMed  Google Scholar 

  • Ghatak NR, Leshner RT, Price AC, Felton WL 3rd (1989) Remyelination in the human central nervous system. J Neuropathol Exp Neurol 48:507–518

    Article  CAS  PubMed  Google Scholar 

  • Hinks GL, Franklin RJ (2000) Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats. Mol Cell Neurosci 16:542–556. doi:10.1006/mcne.2000.0897

    Article  CAS  PubMed  Google Scholar 

  • Irvine KA, Blakemore WF (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131:1464–1477

    Article  CAS  PubMed  Google Scholar 

  • Jeffery ND, Blakemore WF (1997) Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain 120(Pt. 1):27–37

    Article  PubMed  Google Scholar 

  • Kantarci OH, Weinshenker BG (2005) Natural history of multiple sclerosis. Neurol Clin 23:17–38

    Article  PubMed  Google Scholar 

  • Kantarci O, Siva A, Eraksoy M, Karabudak R, Sutlas N, Agaoglu J, Turan F, Ozmenoglu M, Togrul E, Demirkiran M (1998) Survival and predictors of disability in Turkish MS patients. Turkish Multiple Sclerosis Study Group (TUMSSG). Neurology 51:765–772

    Article  CAS  PubMed  Google Scholar 

  • Kantarci OH, Pirko I, Rodriguez M (2014) Novel immunomodulatory approaches for the management of multiple sclerosis. Clin Pharmacol Ther 95:32–44

    Article  CAS  PubMed  Google Scholar 

  • Keegan M, Pineda AA, McClelland RL, Darby CH, Rodriguez M, Weinshenker BG (2002) Plasma exchange for severe attacks of CNS demyelination: predictors of response. Neurology 58:143–146

    Article  CAS  PubMed  Google Scholar 

  • Kermode AG, Thompson AJ, Tofts P, MacManus DG, Kendall BE, Kingsley DP, Moseley IF, Rudge P, McDonald WI (1990) Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 113(Pt. 5):1477–1489

    Article  PubMed  Google Scholar 

  • Koch M, Mostert J, Heersema D, De Keyser J (2007) Progression in multiple sclerosis: further evidence of an age dependent process. J Neurol Sci 255:35–41

    Article  CAS  PubMed  Google Scholar 

  • Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212

    Article  PubMed  Google Scholar 

  • Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    Article  PubMed  Google Scholar 

  • Lang W, Rodriguez M, Lennon VA, Lampert PW (1984) Demyelination and remyelination in murine viral encephalomyelitis. Ann N Y Acad Sci 436:98–102

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7:115–121

    Article  CAS  PubMed  Google Scholar 

  • Lebrun C, Bensa C, Debouverie M, De Seze J, Wiertlievski S, Brochet B, Clavelou P, Brassat D, Labauge P, Roullet E (2008) Unexpected multiple sclerosis: follow-up of 30 patients with magnetic resonance imaging and clinical conversion profile. J Neurol Neurosurg Psychiatry 79:195–198

    Article  CAS  PubMed  Google Scholar 

  • Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, Bebo B Jr, Calabresi PA, Clanet M, Comi G, Fox RJ, Freedman MS, Goodman AD, Inglese M, Kappos L, Kieseier BC, Lincoln JA, Lubetzki C, Miller AE, Montalban X, O’Connor PW, Petkau J, Pozzilli C, Rudick RA, Sormani MP, Stuve O, Waubant E, Polman CH (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83:278–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (1999) A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases. Brain 122(Pt 12):2279–2295

    Article  PubMed  Google Scholar 

  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  CAS  PubMed  Google Scholar 

  • Magaña SM, Keegan BM, Weinshenker BG, Erickson BJ, Pittock SJ, Lennon VA, Rodriguez M, Thomsen K, Weigand S, Mandrekar J, Linbo L, Lucchinetti CF (2011) Beneficial plasma exchange response in central nervous system inflammatory demyelination. Arch Neurol 68:870–878

    Article  PubMed  PubMed Central  Google Scholar 

  • Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, Chang J, Thill G, Levesque M, Zhang M, Hession C, Sah D, Trapp B, He Z, Jung V, McCoy JM, Pepinsky RB (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8:745–751

    Article  CAS  PubMed  Google Scholar 

  • Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, Wong WM, Wang L, Su H, Chu TH, Guo J, Zhang W, So KF, Pepinsky B, Shao Z, Graff C, Garber E, Jung V, Wu EX, Wu W (2007) LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med 13:1228–1233

    Google Scholar 

  • Mitsunaga Y, Ciric B, Van Keulen V, Warrington AE, Paz SM, Bieber AJ, Rodriguez M, Pease LR (2002) Direct evidence that a human antibody derived from patient serum can promote myelin repair in a mouse model of chronic-progressive demyelinating disease. FASEB J 16:1325–1327

    CAS  PubMed  Google Scholar 

  • Murray PD, McGavern DB, Sathornsumetee S, Rodriguez M (2001) Spontaneous remyelination following extensive demyelination is associated with improved neurological function in a viral model of multiple sclerosis. Brain 124:1403–1416

    Article  CAS  PubMed  Google Scholar 

  • Noseworthy JH, O’Brien PC, Weinshenker BG, Weis JA, Petterson TM, Erickson BJ, Windebank AJ, Whisnant JP, Stolp-Smith KA, Harper CM Jr, Low PA, Romme LJ, Johnson M, An KN, Rodriguez M (2000) IV immunoglobulin does not reverse established weakness in MS. Neurology 55:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Novotna M, Paz Soldan MM, Abou ZN, Kale N, Tutuncu M, Crusan DJ, Atkinson EJ, Siva A, Keegan BM, Pirko I, Pittock SJ, Lucchinetti CF, Noseworthy JH, Weinshenker BG, Rodriguez M, Kantarci OH (2015a) Poor early relapse recovery affects onset of progressive disease course in multiple sclerosis. Neurology 85:722–729

    Article  PubMed  PubMed Central  Google Scholar 

  • Novotna M, Rodriguez M, Kantarci OH (2015b) Promising directions in relapse-impact prevention in multiple sclerosis. Pract Neurol:22–31

    Google Scholar 

  • Okuda DT, Mowry EM, Beheshtian A, Waubant E, Baranzini SE, Goodin DS, Hauser SL, Pelletier D (2009) Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology 72:800–805

    Article  CAS  PubMed  Google Scholar 

  • Ozawa K, Suchanek G, Breitschopf H, Bruck W, Budka H, Jellinger K, Lassmann H (1994) Patterns of oligodendroglia pathology in multiple sclerosis. Brain 117(Pt. 6):1311–1322

    Article  PubMed  Google Scholar 

  • Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Bruck W, Lucchinetti C, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172

    Article  PubMed  Google Scholar 

  • Paz Soldan MM, Warrington AE, Bieber AJ, Ciric B, Van Keulen V, Pease LR, Rodriguez M (2003) Remyelination-promoting antibodies activate distinct Ca2+ influx pathways in astrocytes and oligodendrocytes: relationship to the mechanism of myelin repair. Mol Cell Neurosci 22:14–24

    Article  PubMed  Google Scholar 

  • Paz Soldan MM, Novotna M, Abou ZN, Kale N, Tutuncu M, Crusan DJ, Atkinson EJ, Siva A, Keegan BM, Pirko I, Pittock SJ, Lucchinetti CF, Weinshenker BG, Rodriguez M, Kantarci OH (2015) Relapses and disability accumulation in progressive multiple sclerosis. Neurology 84:81–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirko I, Ciric B, Gamez J, Bieber AJ, Warrington AE, Johnson AJ, Hanson DP, Pease LR, Macura SI, Rodriguez M (2004) A human antibody that promotes remyelination enters the CNS and decreases lesion load as detected by T2-weighted spinal cord MRI in a virus-induced murine model of MS. FASEB J 18:1577–1579

    CAS  PubMed  Google Scholar 

  • Rodriguez M (2003) A function of myelin is to protect axons from subsequent injury: implications for deficits in multiple sclerosis. Brain 126:751–752

    Article  PubMed  Google Scholar 

  • Rodriguez M, Scheithauer B (1994) Ultrastructure of multiple sclerosis. Ultrastruct Pathol 18:3–13

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M, Lennon VA, Benveniste EN, Merrill JE (1987) Remyelination by oligodendrocytes stimulated by antiserum to spinal cord. J Neuropathol Exp Neurol 46:84–95

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M, Scheithauer BW, Forbes G, Kelly PJ (1993) Oligodendrocyte injury is an early event in lesions of multiple sclerosis. Mayo Clin Proc 68:627–636

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M, Kantarci OH, Pirko I (2013) Treatment to promote remyelination. In: Rodriguez M, Kantarci OH, Pirko I (eds) Multiple sclerosis. Oxford University Press, New York

    Chapter  Google Scholar 

  • Rotstein DL, Healy BC, Malik MT, Carruthers RL, Musallam AJ, Kivisakk P, Weiner HL, Glanz B, Chitnis T (2015) Effect of vitamin D on MS activity by disease-modifying therapy class. Neurol Neuroimmunol Neuroinflamm 2:e167

    Article  PubMed  PubMed Central  Google Scholar 

  • Runmarker B, Andersen O (1993) Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain 116(Pt. 1):117–134

    Article  PubMed  Google Scholar 

  • Seehusen F, Baumgartner W (2010) Axonal pathology and loss precede demyelination and accompany chronic lesions in a spontaneously occurring animal model of multiple sclerosis. Brain Pathol 20:551–559

    Article  CAS  PubMed  Google Scholar 

  • Sim FJ, Zhao C, Penderis J, Franklin RJ (2002) The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci 22:2451–2459

    CAS  PubMed  Google Scholar 

  • Siva A, Saip S, Altintas A, Jacob A, Keegan BM, Kantarci OH (2009) Multiple sclerosis risk in radiologically uncovered asymptomatic possible inflammatory-demyelinating disease. Mult Scler 15:918–927

    Article  CAS  PubMed  Google Scholar 

  • Smith KJ, Blakemore WF, McDonald WI (1979) Central remyelination restores secure conduction. Nature 280:395–396

    Article  CAS  PubMed  Google Scholar 

  • Smith KJ, Blakemore WF, McDonald WI (1981) The restoration of conduction by central remyelination. Brain 104:383–404

    Article  CAS  PubMed  Google Scholar 

  • Traboulsee A (2007) MRI relapses have significant pathologic and clinical implications in multiple sclerosis. J Neurol Sci 256(Suppl. 1):S19–S22

    Article  PubMed  Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  CAS  PubMed  Google Scholar 

  • Tutuncu M, Tang J, Zeid NA, Kale N, Crusan DJ, Atkinson EJ, Siva A, Pittock SJ, Pirko I, Keegan BM, Lucchinetti CF, Noseworthy JH, Rodriguez M, Weinshenker BG, Kantarci OH (2013) Onset of progressive phase is an age-dependent clinical milestone in multiple sclerosis. Mult Scler 19:188–198

    Article  PubMed  Google Scholar 

  • Warrington AE, Asakura K, Bieber AJ, Ciric B, Van Keulen V, Kaveri SV, Kyle RA, Pease LR, Rodriguez M (2000) Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci U S A 97:6820–6825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warrington AE, Bieber AJ, Van Keulen V, Ciric B, Pease LR, Rodriguez M (2004) Neuron-binding human monoclonal antibodies support central nervous system neurite extension. J Neuropathol Exp Neurol 63:461–473

    Article  CAS  PubMed  Google Scholar 

  • Warrington AE, Bieber AJ, Ciric B, Pease LR, Van Keulen V, Rodriguez M (2007) A recombinant human IgM promotes myelin repair after a single, very low dose. J Neurosci Res 85:967–976

    Article  CAS  PubMed  Google Scholar 

  • Watzlawik J, Holicky E, Edberg DD, Marks DL, Warrington AE, Wright BR, Pagano RE, Rodriguez M (2010) Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia 58:1782–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiner LP, Waxman SG, Stohlman SA, Kwan A (1980) Remyelination following viral-induced demyelination: ferric ion-ferrocyanide staining of nodes of Ranvier within the CNS. Ann Neurol 8:580–583

    Article  CAS  PubMed  Google Scholar 

  • Weiner HL, Hauser SL, Hafler DA, Fallis RJ, Lehrich JR, Dawson DM (1984) The use of cyclophosphamide in the treatment of multiple sclerosis. Ann N Y Acad Sci 436:373–381

    Article  CAS  PubMed  Google Scholar 

  • Weinshenker BG (1998) The natural history of multiple sclerosis: update 1998. Semin Neurol 18:301–307

    Article  CAS  PubMed  Google Scholar 

  • Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J, Ebers GC (1989) The natural history of multiple sclerosis: a geographically based study. 2. Predictive value of the early clinical course. Brain 112(Pt. 6):1419–1428

    Article  PubMed  Google Scholar 

  • Wolinsky JS (2003) The diagnosis of primary progressive multiple sclerosis. J Neurol Sci 206:145–152

    Article  PubMed  Google Scholar 

  • Wootla B, Watzlawik JO, Denic A, Rodriguez M (2013) The road to remyelination in demyelinating diseases: current status and prospects for clinical treatment. Expert Rev Clin Immunol 9:535–549

    Article  CAS  PubMed  Google Scholar 

  • Wootla B, Watzlawik JO, Warrington AE, Wittenberg NJ, Denic A, Xu X, Jordan LR, Papke LM, Zoecklein LJ, Pierce ML, Oh SH, Kantarci OH, Rodriguez M (2015) Naturally occurring monoclonal antibodies and their therapeutic potential for neurologic diseases. JAMA Neurol 72:1346–1353

    Article  PubMed  Google Scholar 

  • Xu X, Denic A, Warrington AE, Bieber AJ, Rodriguez M (2013) Therapeutics to promote CNS repair: a natural human neuron-binding IgM regulates membrane-raft dynamics and improves motility in a mouse model of multiple sclerosis. J Clin Immunol 33(Suppl. 1):S50–S56

    Article  PubMed  Google Scholar 

  • Yuan Q, Wong WM, Wang L, Su H, Chu TH, Guo J, Zhang W, So KF, Pepinsky B, Shao Z, Graff C, Garber E, Jung V, Wu EX, Wu W (2007) LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med 13:1228–1233. doi:10.1038/nm1664

    Article  PubMed  Google Scholar 

  • Zhao C, Li WW, Franklin RJ (2006) Differences in the early inflammatory responses to toxin-induced demyelination are associated with the age-related decline in CNS remyelination. Neurobiol Aging 27:1298–1307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. Lea Dacy for assistance with editing and formatting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orhun H. Kantarci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zeydan, B., Rodriguez, M., Kantarci, O.H. (2017). Timing of Future Remyelination Therapies and Their Potential to Stop Multiple Sclerosis Progression. In: Asea, A., Geraci, F., Kaur, P. (eds) Multiple Sclerosis: Bench to Bedside. Advances in Experimental Medicine and Biology, vol 958. Springer, Cham. https://doi.org/10.1007/978-3-319-47861-6_10

Download citation

Publish with us

Policies and ethics