Skip to main content

Introduction to Chaotic Intermittency

  • Chapter
  • First Online:
New Advances on Chaotic Intermittency and its Applications

Abstract

Intermittency phenomenon is characterized by a signal that alternates randomly regular or laminar phases and irregular bursts. It has been experimentally verified that the number of chaotic bursts intensifies with an external or control parameter. Intermittency has been observed in a large number of experiments and it offers a continuous route from regular to chaotic motion. In this book, we focus on temporal intermittency, which can occur in low-order dynamical systems. Traditionally intermittency was classified into three different types called I, II, and III. Nevertheless, later studies have introduced other types of intermittencies: type V, X, eyelet, off–on, ring, etc. In this chapter a brief description of classic intermittencies is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, V.: Ordinary Differential Equations. MIT Press, Cambridge, MA (1973)

    MATH  Google Scholar 

  2. Nayfeh, A., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  3. Marek, M., Schreiber, I.: Chaotic Behaviour of Deterministic Dissipative Systems. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  4. Bai-lin, H.: Elementary Symbolic Dynamics and Chaos in Dissipative Systems. World Scientific, Singapore (1989)

    Book  MATH  Google Scholar 

  5. May, R.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  Google Scholar 

  6. Gulick, D.: Encounters with Chaos. McGraw-Hill International Editions, New York (1992)

    MATH  Google Scholar 

  7. Henon, M.: A two dimensional mapping with strange attractor. Commun. Math. Phys. 5, 69–77 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dubois, M., Rubio, M., Berge, P.: Experimental evidence of intermittencies associated with a subharmonic bifurcation. Phys. Rev. Lett. 16, 1446–1449 (1983)

    Article  MathSciNet  Google Scholar 

  9. Malasoma, J., Werny, P., Boiron, M.: Multichannel type-I intermittency in two models of Rayleigh-Benard convection. Phys. Rev. Lett. 51, 487–500 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Stavrinides, S., Miliou, A., Laopoulos, T., Anagnostopoulos, A.: The intermittency route to chaos of an electronic digital oscillator. Int. J. Bifurcation Chaos 18, 1561–1566 (2008)

    Article  MATH  Google Scholar 

  11. Sanmartin, J., Lopez-Rebollal, O., del Rio, E., Elaskar, S.: Hard transition to chaotic dynamics in Alfven wave-fronts. Phys. Plasmas 11, 2026–2035 (2004)

    Article  Google Scholar 

  12. Sanchez-Arriaga, G., Sanmartin, J., Elaskar, S.: Damping models in the truncated derivative nonlinear Schrodinger equation. Phys. Plasmas 14, 082108 (2007)

    Article  Google Scholar 

  13. Pizza, G., Frouzakis, C., Mantzaras, J.: Chaotic dynamics in premixed Hydrogen/air channel flow combustion. Combust. Theor. Model. 16, 275–299 (2012)

    Article  MATH  Google Scholar 

  14. Nishiura, Y., Ueyama, D., Yanagita, T.: Chaotic pulses for discrete reaction diffusion systems. SIAM J. Appl. Dyn. Syst. 4, 723–754 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A., Bolster, D., Davy, P.: Flow intermittency, dispersion and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110, 184502 (2013)

    Article  Google Scholar 

  16. Stan, C., Cristescu, C., Dimitriu, D.: Analysis of the intermittency behavior in a low-temperature discharge plasma by recurrence plot quantification. Phys. Plasmas 17, 042115 (2010)

    Article  Google Scholar 

  17. Chian, A.: Complex System Approach to Economic Dynamics. Lecture Notes in Economics and Mathematical Systems, pp. 39–50. Springer, Berlin (2007)

    Google Scholar 

  18. Zebrowski, J., Baranowski, R.: Type-I intermittency in nonstationary systems: models and human heart-rate variability. Physica A 336, 74–86 (2004)

    Article  MathSciNet  Google Scholar 

  19. Paradisi, P., Allegrini, P., Gemignani, A., Laurino, M., Menicucci, D., Piarulli, A.: Scaling and intermittency of brains events as a manifestation of consciousness. AIP Conf. Proc. 1510, 151–161 (2012)

    Google Scholar 

  20. Batchelor, G., Townsend, C.: The nature of turbulent motion at large wave-number. Proc. R. Soc. Lond. A 199, 238–255 (1949)

    Article  MATH  Google Scholar 

  21. Spiegel, E.: Catastrophes, chaos and cycles. In: Cini Castagnoli, G., Provenzale, A. (eds.) Past and Present Variability of the Solar-Terrestrial System: Measurement, Data Analysis, and Theoretical Models. IOS Press, Amsterdam (1997)

    Google Scholar 

  22. Hirsch, J., Hubermann, B., Scalapino, D.: Theory of intermittency. Phys. Rev. A 25, 519–532 (1982)

    Article  Google Scholar 

  23. Schuster, H., Just, W.: Deterministic Chaos. An Introduction. Wiley VCH Verlag GmbH & Co. KGaA, Weinheim (2005)

    Book  MATH  Google Scholar 

  24. Pikovsky, A.: A new type of intermittent transition to chaos. J. Phys. A: Math. Gen. 16, L109–L112 (1983)

    Article  MathSciNet  Google Scholar 

  25. Kim, C., Kwon, O., Lee, E., Lee, H.: New characteristic relation in type-I intermittency. Phys. Rev. Lett. 73, 525–528 (1994)

    Article  Google Scholar 

  26. Manneville, P., Pomeau, Y.: Intermittency and Lorenz model. Phys. Lett. A 75, 1–2 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Manneville, P.: Intermittency, self-similarity and 1/f spectrum in dissipative dynamical systems. J. Phys. 41, 1235–1243 (1980)

    Article  MathSciNet  Google Scholar 

  28. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)

    Article  MathSciNet  Google Scholar 

  29. Kye, W., Kim, C.: Characteristic relations of type-I intermittency in presence of noise. Phys. Rev. E 62, 6304–6307 (2000)

    Article  Google Scholar 

  30. Kye, W., Rim, S., Kim, C., Lee, J., Ryu, J., Yeom, B., Park, Y.: Experimental observation of characteristic relations of type-III intermittency in the presence of noise in a simple electronic circuit. Phys. Rev. E 68, 036203 (2003)

    Article  Google Scholar 

  31. del Rio, E., Elaskar, S.: New characteristic relation in type-II intermittency. Int. J. Bifurcation Chaos 20, 1185–1191 (2010)

    Article  MATH  Google Scholar 

  32. Elaskar, S., del Rio, E., Donoso, J.: Reinjection probability density in type-III intermittency. Physica A 390, 2759–2768 (2011)

    Article  Google Scholar 

  33. del Rio, E., Velarde, M., Rodríguez-Lozano, A.: Long time data series and difficulties with the characterization of chaotic attractors: a case with intermittency III. Chaos Solitons Fractals 4, 2169–2179 (1994)

    Article  MATH  Google Scholar 

  34. del Rio, E., Sanjuan, M., Elaskar, S.: Effect of noise on the reinjection probability density in intermittency. Commun. Numer. Simul. Nonlinear Sci. 17, 3587–3596 (2012)

    Article  MATH  Google Scholar 

  35. Elaskar, S., del Rio, E.: Intermittency reinjection probability function with and without noise effects. In: Latest Trends in Circuits, Automatics Control and Signal Processing, Barcelona, pp. 145–154 (2012). ISBN: 978-1-61804-131-9

    Google Scholar 

  36. del Rio, E., Elaskar, S., Makarov, S.: Theory of intermittency applied to classical pathological cases. Chaos 23, 033112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. del Rio, E., Elaskar, S., Donoso, J.: Laminar length and characteristic relation in type-I intermittency. Commun. Numer. Simul. Nonlinear Sci. 19, 967–976 (2014)

    Article  Google Scholar 

  38. Krause, G., Elaskar, S., del Rio, E.: Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrodinger equation. Nonlinear Dyn. 77, 455–466 (2014)

    Article  MathSciNet  Google Scholar 

  39. Krause, G., Elaskar, S., del Rio, E.: Noise effect on statistical properties of type-I intermittency. Physica A 402, 318–329 (2014)

    Article  MathSciNet  Google Scholar 

  40. Elaskar, S., del Rio, E., Krause, G., Costa, A.: Effect of the lower boundary of reinjection and noise in type-II intermittency. Nonlinear Dyn. 79, 1411–1424 (2015)

    Article  Google Scholar 

  41. Rasband, S.: Chaotic Dynamics of Nonlinear Systems. Wiley, New York (1990)

    MATH  Google Scholar 

  42. Kaplan, H.: Return to type-I intermittency. Phys. Rev. E 68, 553–557 (1992)

    MathSciNet  MATH  Google Scholar 

  43. Price, T., Mullin, P.: An experimental observation of a new type of intermittency. Physica D 48, 29–52 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Platt, N., Spiegel, E., Tresser, C.: On-off intermittency: a mechanism for bursting. Phys. Rev. Lett. 70, 279–282 (1993)

    Article  Google Scholar 

  45. Pikovsky, A., Osipov, G., Rosenblum, M., Zaks, M., Kurths, J.: Attractor-repeller collision and eyelet intermittency at the transition to phase synchronization. Phys. Rev. Lett. 79, 47–50 (1997)

    Article  Google Scholar 

  46. Lee, K., Kwak, Y., Lim, T.: Phase jumps near a phase synchronization transition in systems of two coupled chaotic oscillators. Phys. Rev. Lett. 81, 321–324 (1998)

    Article  Google Scholar 

  47. Hramov, A., Koronovskii, A., Kurovskaya, M., Boccaletti, S.: Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization. Phys. Rev. Lett. 97, 114101 (2006)

    Article  Google Scholar 

  48. Stavrinides, S., Anagnostopoulos, A.: The route from synchronization to desynchronization of chaotic operating circuits and systems. In: Banerjee, S., Rondoni, L. (eds.) Applications of Chaos and Nonlinear Dynamics in Science and Engineering (Chap 9). Springer, Berlin (2013)

    Google Scholar 

  49. Arnold, V.: Geometrical Methods in the Theory of Differential Equations. Springer, Berlin (1988)

    Book  Google Scholar 

  50. Floquet, G.: Sur les équations différentielles linéaires á coefficients périodiques. Annal. Sci. Ecole Norm. Sup. 12, 47–89 (1983)

    MathSciNet  Google Scholar 

  51. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Field. Springer, New York (1983)

    Book  MATH  Google Scholar 

  52. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)

    MATH  Google Scholar 

  53. Laugesen, J., Carlsson, N., Mosekilde, E., Bountis, T.: Anomalous statistic for type-III intermittency. Open Syst. Inf. Dyn. 4, 393–405 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Elaskar, S., del Río, E. (2017). Introduction to Chaotic Intermittency. In: New Advances on Chaotic Intermittency and its Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-47837-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47837-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47836-4

  • Online ISBN: 978-3-319-47837-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics