Skip to main content

Nanomaterials as Implantable Sensors

  • Chapter
  • First Online:
Materials for Chemical Sensing

Abstract

One of the biggest challenges the world is currently facing is a rapid increase in the population in both developing and developed countries. With increasing population, an effort to provide adequate healthcare service while minimizing healthcare cost is an important issue particularly to “at risk” population group, such as the elderly. To improve the survivability and quality of life, it requires a continuous monitoring of their physical and mental conditions in order to diagnose any disease in early stages; otherwise, it may impart a heavy monetary and administrative burden. There are a number of diseases such as diabetes, hypertension, asthma, renal failure, and infectious disease that can easily be diagnosed by monitoring specific parameters which includes blood glucose level, blood pressure, partial pressure of oxygen, urea, and inflammatory markers, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albertazzi L, Brondi M, Pavan GM, Sato SS, Signore G, Storti B, Ratto GM, Beltram F (2011) Dendrimer-based fluorescent indicators: in vitro and in vivo applications. PLoS ONE 6(12):e28450

    Article  Google Scholar 

  2. Albertazzi L, Storti B, Brondi M, Sato SS, Ratto GM, Signore G, Beltram F (2013) Synthesis, cellular delivery and in vivo application of dendrimer-based pH sensors. J Visualized Exp (JoVE) 79

    Google Scholar 

  3. Almutairi A, Guillaudeu SJ, Berezin MY, Achilefu S, Fréchet JM (2008) Biodegradable pH-sensing dendritic nanoprobes for near-infrared fluorescence lifetime and intensity imaging. J Am Chem Soc 130(2):444–445

    Article  Google Scholar 

  4. Anderson JM (2001) Biological responses to materials. Annu Rev Mater Res 31(1):81–110

    Article  Google Scholar 

  5. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. In: Seminars in immunology, vol 2. Elsevier, London, pp 86–100

    Google Scholar 

  6. Armada MPG, Losada J, Zamora M, Alonso B, Cuadrado I, Casado CM (2006) Electrocatalytical properties of polymethylferrocenyl dendrimers and their applications in biosensing. Bioelectrochemistry 69(1):65–73

    Article  Google Scholar 

  7. Bachan Upadhyay LS, Verma N (2013) Enzyme inhibition based biosensors: a review. Anal Lett 46(2):225–241

    Article  Google Scholar 

  8. Bai C, Liu M (2012) Implantation of nanomaterials and nanostructures on surface and their applications. Nano Today 7(4):258–281

    Article  Google Scholar 

  9. Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4(1):86–92

    Article  Google Scholar 

  10. Barone PW, Parker RS, Strano MS (2005) In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages. Anal Chem 77(23):7556–7562

    Article  Google Scholar 

  11. Beitollahi H, Sheikhshoaie I (2011) Electrocatalytic oxidation and determination of epinephrine in the presence of uric acid and folic acid at multiwalled carbon nanotubes/molybdenum (VI) complex modified carbon paste electrode. Anal Methods 3(8):1810–1814

    Article  Google Scholar 

  12. Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F (2012) Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interface Sci 170(1):2–27

    Article  Google Scholar 

  13. Boghossian AA, Zhang J, Barone PW, Reuel NF, Kim JH, Heller DA, Ahn JH, Hilmer AJ, Rwei A, Arkalgud JR (2011) Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications. ChemSusChem 4(7):848–863

    Article  Google Scholar 

  14. Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16(12):584–593

    Article  Google Scholar 

  15. Chiu N-F, Wang J-M, Liao C-W, Chen C-H, Chen H-C, Yang L-J, Lu S-S, Lin C-W (2005) An implantable multifunctional needle type biosensor with integrated RF capability. In: Annual international conference of the engineering in Medicine and Biology Society. IEEE-EMBS 2005. 27th , 2006. IEEE, pp 1933–1936

    Google Scholar 

  16. Cui Y, Wang J, Plissard SR, Cavalli A, Vu TT, van Veldhoven RP, Gao L, Trainor M, Verheijen MA, Haverkort JE (2013) Efficiency enhancement of InP nanowire solar cells by surface cleaning. Nano Lett 13(9):4113–4117

    Article  Google Scholar 

  17. Darwish A, Hassanien AE (2011) Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors 11(6):5561–5595

    Article  Google Scholar 

  18. Dong X, Wang X, Wang L, Song H, Zhang H, Huang W, Chen P (2012) 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl Mater Interfaces 4(6):3129–3133

    Article  Google Scholar 

  19. Du Toit H, Di Lorenzo M (2014) Glucose oxidase directly immobilized onto highly porous gold electrodes for sensing and fuel cell applications. Electrochim Acta 138:86–92

    Article  Google Scholar 

  20. Eckert MA, Vu PQ, Zhang K, Kang D, Ali MM, Xu C, Zhao W (2013) Novel molecular and nanosensors for in vivo sensing. Theranostics 3(8)

    Google Scholar 

  21. Fan Z-J, Kai W, Yan J, Wei T, Zhi L-J, Feng J, Y-m Ren, Song L-P, Wei F (2010) Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5(1):191–198

    Article  Google Scholar 

  22. Fan Z, Liu B, Liu X, Li Z, Wang H, Yang S, Wang J (2013) A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor. Electrochim Acta 109:602–608

    Article  Google Scholar 

  23. Feng Y, Wang K, Davies CH, Wang H (2015) Carbon nanotube/alumina/polyethersulfone hybrid hollow fiber membranes with enhanced mechanical and anti-fouling properties. Nanomaterials 5(3):1366–1378

    Article  Google Scholar 

  24. Fiala J, Bingger P, Ruh D, Foerster K, Heilmann C, Beyersdorf F, Zappe H, Seifert A (2013) An implantable optical blood pressure sensor based on pulse transit time. Biomed Microdevices 15(1):73–81

    Article  Google Scholar 

  25. Gou P, Kraut ND, Feigel IM, Bai H, Morgan GJ, Chen Y, Tang Y, Bocan K, Stachel J, Berger L (2014) Carbon nanotube chemiresistor for wireless pH sensing. Sci Rep 4

    Google Scholar 

  26. Gough DA, Kumosa LS, Routh TL, Lin JT, Lucisano JY (2010) Function of an implanted tissue glucose sensor for more than 1 year in animals. Sci Transl Med 2(42):42ra53–42ra53

    Article  Google Scholar 

  27. Greco RS, Prinz FB, Smith RL (2004) Nanoscale technology in biological systems. CRC Press, Boca Raton

    Google Scholar 

  28. Han ZJ, Rider AE, Fisher C, van der Laan T, Kumar S, Levchenko I, Ostrikov K (2014) Biological application of carbon nanotubes and graphene. In: Carbon nanotubes and graphene, 2nd edn., pp 279–312

    Google Scholar 

  29. Hasanzadeh M, Shadjou N, Eskandani M, Soleymani J, Jafari F, de la Guardia M (2014) Dendrimer-encapsulated and cored metal nanoparticles for electrochemical nanobiosensing. TrAC Trends Anal Chem 53:137–149

    Article  Google Scholar 

  30. Helton KL, Ratner BD, Wisniewski NA (2011) Biomechanics of the sensor-tissue interface—effects of motion, pressure, and design on sensor performance and the foreign body response—part I: theoretical framework. J Diabetes Sci Technol 5(3):632–646

    Article  Google Scholar 

  31. Hovorka R (2011) Closed-loop insulin delivery: from bench to clinical practice. Nat Rev Endocrinol 7(7):385–395

    Article  Google Scholar 

  32. Ilinskaya A, Dobrovolskaia M (2014) Immunosuppressive and anti-inflammatory properties of engineered nanomaterials. Br J Pharmacol 171(17):3988–4000

    Article  Google Scholar 

  33. Iverson NM, Barone PW, Shandell M, Trudel LJ, Sen S, Sen F, Ivanov V, Atolia E, Farias E, McNicholas TP (2013) In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol 8(11):873–880

    Article  Google Scholar 

  34. Iverson NM, Strano MS, Wogan GN (2014) In vivo delivery of nitric oxide‐sensing, single‐walled carbon nanotubes. Curr Protoc Chem Biol 93–102

    Google Scholar 

  35. Jiang G (2010) Design challenges of implantable pressure monitoring system. Front Neurosci 4:2

    Google Scholar 

  36. Jiang Y, Zhang Q, Li F, Niu L (2012) Glucose oxidase and graphene bionanocomposite bridged by ionic liquid unit for glucose biosensing application. Sens Actuators B: Chem 161(1):728–733

    Article  Google Scholar 

  37. Kan X, Zhao Y, Geng Z, Wang Z, Zhu J-J (2008) Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition. J Phys Chem C 112(13):4849–4854

    Article  Google Scholar 

  38. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25(4):901–905

    Article  Google Scholar 

  39. Khanna VK (2015) Implantable medical electronics: prosthetics, drug delivery, and health monitoring. Springer, Berlin

    Google Scholar 

  40. Kim J-H, Heller DA, Jin H, Barone PW, Song C, Zhang J, Trudel LJ, Wogan GN, Tannenbaum SR, Strano MS (2009) The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nat Chem 1(6):473–481

    Article  Google Scholar 

  41. Klonoff DC (2007) The benefits of implanted glucose sensors. J Diab Sci Tech 1(6):797–800

    Article  Google Scholar 

  42. Koh A, Lu Y, Schoenfisch MH (2013) Fabrication of nitric oxide-releasing porous polyurethane membranes-coated needle-type implantable glucose biosensors. Anal Chem 85(21):10488–10494

    Article  Google Scholar 

  43. Kvist PH, Iburg T, Aalbaek B, Gerstenberg M, Schoier C, Kaastrup P, Buch-Rasmussen T, Hasselager E, Jensen HE (2006) Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis. Diabetes Technol Ther 8(5):546–559

    Article  Google Scholar 

  44. Li C, Yamahara H, Lee Y, Tabata H, Delaunay J-J (2015) CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing. Nanotechnology 26(30):305503

    Article  Google Scholar 

  45. Li H, Wang Y, Ye D, Luo J, Su B, Zhang S, Kong J (2014) An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta 127:255–261

    Article  Google Scholar 

  46. Lin L, Cai Y, Lin R, Yu L, Song C, Gao H, Li X (2011) New integrated in vivo microdialysis-electrochemical device for determination of the neurotransmitter dopamine in rat striatum of freely moving rats. Microchim Acta 172(1–2):217–223

    Article  Google Scholar 

  47. Liu J, Wang J, Wang T, Li D, Xi F, Wang J, Wang E (2015) Three-dimensional electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on monolithic and macroporous graphene foam. Biosens Bioelectron 65:281–286

    Article  Google Scholar 

  48. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18(10):1518–1525

    Article  Google Scholar 

  49. Lo B, Yang G-Z (2005) Key technical challenges and current implementations of body sensor networks. In: Proceeding 2nd international workshop on body sensor networks (BSN 2005)

    Google Scholar 

  50. Luz RA, Iost RM, Crespilho FN (2013) Nanomaterials for biosensors and implantable biodevices. In: Nanobioelectrochemistry. Springer, Berlin, pp 27–48

    Google Scholar 

  51. McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6(5):379–384

    Article  Google Scholar 

  52. Mitchell ST, Frese N, Gölzhäuser A, Bowers A, Sattler K (2015) Ultralight carbon nanofoam from naphtalene-mediated hydrothermal sucrose carbonization. Carbon 95:434–441

    Article  Google Scholar 

  53. Mundra RV, Wu X, Sauer J, Dordick JS, Kane RS (2014) Nanotubes in biological applications. Curr Opin Biotechnol 28:25–32

    Article  Google Scholar 

  54. Murty BS, Shankar P, Raj B, Rath B, Murday J (2013) Textbook of nanoscience and nanotechnology. Springer Science & Business Media, Berlin

    Google Scholar 

  55. Neves H (2013) Materials for implantable systems. Implantable Sens Syst Med Appl 1

    Google Scholar 

  56. Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess DJ (2008) A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol 2(6):1003–1015

    Article  Google Scholar 

  57. Oshida Y, Guven Y (2015) Biocompatible coatings for metallic biomaterials. Surf Coat Modif Metallic Biomater 287

    Google Scholar 

  58. Pacurari M, Castranova V, Vallyathan V (2010) Single-and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans? J Toxicol Environ Health Part A 73(5–6):378–395

    Article  Google Scholar 

  59. Paek S-H, Cho I-H, Kim D-H, Jeon J-W, Lim G-S, Paek S-H (2013) Label-free, needle-type biosensor for continuous glucose monitoring based on competitive binding. Biosens Bioelectron 40(1):38–44

    Article  Google Scholar 

  60. Park H, Kim S, Kim S, Song Y, Seung K, Hong D, Khang G, Lee D (2010) Antioxidant and anti-inflammatory activities of hydroxybenzyl alcohol releasing biodegradable polyoxalate nanoparticles. Biomacromolecules 11(8):2103–2108

    Article  Google Scholar 

  61. Park I, Li Z, Li X, Pisano AP, Williams RS (2007) Towards the silicon nanowire-based sensor for intracellular biochemical detection. Biosens Bioelectron 22(9):2065–2070

    Article  Google Scholar 

  62. Prasad BB, Prasad A, Tiwari MP, Madhuri R (2013) Multiwalled carbon nanotubes bearing ‘terminal monomeric unit’for the fabrication of epinephrine imprinted polymer-based electrochemical sensor. Biosens Bioelectron 45:114–122

    Article  Google Scholar 

  63. Rafique MMA, Iqbal J (2011) Production of carbon nanotubes by different routes-a review. J Encapsulation Adsorp Sci 1(02):29

    Article  Google Scholar 

  64. Ramgir NS, Zajac A, Sekhar PK, Lee L, Zhukov TA, Bhansali S (2007) Voltammetric detection of cancer biomarkers exemplified by interleukin-10 and osteopontin with silica nanowires. J Phys Chem C 111(37):13981–13987

    Article  Google Scholar 

  65. Renard E, Place J, Cantwell M, Chevassus H, Palerm CC (2010) Closed-loop insulin delivery using a subcutaneous glucose sensor and intraperitoneal insulin delivery feasibility study testing a new model for the artificial pancreas. Diabetes Care 33(1):121–127

    Article  Google Scholar 

  66. Saini M, Singh Y, Arora P, Arora V, Jain K (2015) Implant biomaterials: a comprehensive review. World J Clin (WJCC) 3(1):52

    Article  Google Scholar 

  67. Schachtrupp A, Wetter O, Höer J (2015) An implantable sensor device measuring suture tension dynamics: results of developmental and experimental work. Hernia 1–6

    Google Scholar 

  68. Schulz MJ, Shanov VN, Yun Y (2009) Nanomedicine design of particles, sensors, motors, implants, robots, and devices. Artech House

    Google Scholar 

  69. Schwalke U, Rispal L (2008) Fabrication of Ultra-Sensitive Carbon Nanotube Field-Effect Sensors (CNTFES) for Biomedical Applications. ECS Trans 13(22):39–45

    Article  Google Scholar 

  70. Şenel M, Nergiz C (2012) Development of a novel amperometric glucose biosensor based on copolymer of pyrrole-PAMAM dendrimers. Synth Met 162(7):688–694

    Google Scholar 

  71. Şenel M, Nergiz C, Çevik E (2013) Novel reagentless glucose biosensor based on ferrocene cored asymmetric PAMAM dendrimers. Sens Actuators B: Chem 176:299–306

    Article  Google Scholar 

  72. Si P, Dong X-C, Chen P, Kim D-H (2013) A hierarchically structured composite of Mn 3 O 4/3D graphene foam for flexible nonenzymatic biosensors. J Mater Chem B 1(1):110–115

    Article  Google Scholar 

  73. Stella GM (2011) Carbon nanotubes and pleural damage: perspectives of nanosafety in the light of asbestos experience. Biointerphases 6(2):P1–P17

    Article  Google Scholar 

  74. Sun X, Wu J, Chen Z, Su X, Hinds BJ (2013) Fouling characteristics and electrochemical recovery of carbon nanotube membranes. Adv Funct Mater 23(12):1500–1506

    Article  Google Scholar 

  75. Swamy BK, Venton BJ (2007) Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst 132(9):876–884

    Article  Google Scholar 

  76. Tang L, Du D, Yang F, Liang Z, Ning Y, Wang H, Zhang G-J (2015) Preparation of graphene-modified acupuncture needle and its application in detecting neurotransmitters. Sci Rep 5

    Google Scholar 

  77. Tiwari A, Turner AP (2015) Advanced bioelectronics materials. Wiley, New York

    Google Scholar 

  78. Tjong SC (2009) Advances in biomedical sciences and engineering. Bentham Science Publishers, Sharjah

    Google Scholar 

  79. Toyokuni S (2013) Genotoxicity and carcinogenicity risk of carbon nanotubes. Adv Drug Deliv Rev 65(15):2098–2110

    Article  Google Scholar 

  80. Tuantranont A (2013) Applications of Nanomaterials in Sensors and Diagnostics. Springer Ser Chem Sens Biosens 14

    Google Scholar 

  81. Twibanire JdAK, Grindley TB (2012) Polyester dendrimers. Polymers 4(1):794–879

    Article  Google Scholar 

  82. Upadhyay LSB, Verma N (2015) Recent developments and applications in plant-extract mediated synthesis of silver nanoparticles. Anal Lett 48(17):2676–2692

    Article  Google Scholar 

  83. Updike SJ, Shults MC, Gilligan BJ, Rhodes RK (2000) A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration. Diabetes Care 23(2):208–214

    Article  Google Scholar 

  84. Vaddiraju S, Burgess DJ, Tomazos I, Jain FC, Papadimitrakopoulos F (2010) Technologies for continuous glucose monitoring: current problems and future promises. J Diabetes Sci Technol 4(6):1540–1562

    Article  Google Scholar 

  85. Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25(7):1553–1565

    Article  Google Scholar 

  86. Weinzimer SA, Steil GM, Swan KL, Dziura J, Kurtz N, Tamborlane WV (2008) Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31(5):934–939

    Article  Google Scholar 

  87. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953

    Article  Google Scholar 

  88. Williams DF (2014) There is no such thing as a biocompatible material. Biomaterials 35(38):10009–10014

    Article  Google Scholar 

  89. Wisniewski N, Moussy F, Reichert W (2000) Characterization of implantable biosensor membrane biofouling. Fresenius’ J Anal Chem 366(6–7):611–621

    Article  Google Scholar 

  90. Wisniewski N, Reichert M (2000) Methods for reducing biosensor membrane biofouling. Colloids Surf B 18(3):197–219

    Article  Google Scholar 

  91. Wu Y, Meyerhoff ME (2008) Nitric oxide-releasing/generating polymers for the development of implantable chemical sensors with enhanced biocompatibility. Talanta 75(3):642–650

    Article  Google Scholar 

  92. Wujcik EK, Monty CN (2013) Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine. Wiley Interdisc Rev: Nanomed Nanobiotechnol 5(3):233–249

    Google Scholar 

  93. Xu L, Zhu Y, Tang L, Yang X, Li C (2007) Biosensor based on self-assembling glucose oxidase and dendrimer-encapsulated Pt nanoparticles on carbon nanotubes for glucose detection. Electroanalysis 19(6):717–722

    Article  Google Scholar 

  94. Xu S, Qin Y, Xu C, Wei Y, Yang R, Wang ZL (2010) Self-powered nanowire devices. Nat Nanotechnol 5(5):366–373

    Article  Google Scholar 

  95. Xu Y, Pehrsson PE, Chen L, Zhang R, Zhao W (2007) Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J Phys Chem C 111(24):8638–8643

    Article  Google Scholar 

  96. Yang G-Z, Yacoub M (2006) Body sensor networks

    Google Scholar 

  97. Yao K, Zhu Y, Yang X, Li C (2008) ENFET glucose biosensor produced with dendrimer encapsulated Pt nanoparticles. Mater Sci Eng C 28(8):1236–1241

    Article  Google Scholar 

  98. Yu R, Pan C, Chen J, Zhu G, Wang ZL (2013) Enhanced performance of a ZnO nanowire-based self-powered glucose sensor by piezotronic effect. Adv Funct Mater 23(47):5868–5874

    Article  Google Scholar 

  99. Yue HY, Huang S, Chang J, Heo C, Yao F, Adhikari S, Gunes F, Liu LC, Lee TH, Oh ES (2014) ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of Parkinson’s disease. ACS Nano 8(2):1639–1646

    Article  Google Scholar 

  100. Yun Y-H, Eteshola E, Bhattacharya A, Dong Z, Shim J-S, Conforti L, Kim D, Schulz MJ, Ahn CH, Watts N (2009) Tiny medicine: nanomaterial-based biosensors. Sensors 9(11):9275–9299

    Article  Google Scholar 

  101. Zhan B, Liu C, Chen H, Shi H, Wang L, Chen P, Huang W, Dong X (2014) Free-standing electrochemical electrode based on Ni (OH) 2/3D graphene foam for nonenzymatic glucose detection. Nanoscale 6(13):7424–7429

    Article  Google Scholar 

  102. Zhang L, Zhou M, Dong S (2012) A self-powered acetaldehyde sensor based on biofuel cell. Anal Chem 84(23):10345–10349

    Article  Google Scholar 

  103. Zhang W, Qiao X, Chen J (2007) Synthesis of silver nanoparticles—effects of concerned parameters in water/oil microemulsion. Mater Sci Eng B 142(1):1–15

    Article  Google Scholar 

  104. Zhang Y, Liu Y, Su L, Zhang Z, Huo D, Hou C, Lei Y (2014) CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens Actuators B: Chem 191:86–93

    Article  Google Scholar 

  105. Zhang Y, Su L, Manuzzi D, de los Monteros HVE, Jia W, Huo D, Hou C, Lei Y (2012) Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens Bioelectron 31(1):426–432

    Article  Google Scholar 

  106. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301

    Article  Google Scholar 

  107. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613

    Article  Google Scholar 

  108. Zhu Y, Zhu H, Yang X, Xu L, Li C (2007) Sensitive biosensors based on (dendrimer encapsulated Pt nanoparticles)/enzyme multilayers. Electroanalysis 19(6):698–703

    Article  Google Scholar 

  109. Zhu Z, Garcia-Gancedo L, Flewitt AJ, Xie H, Moussy F, Milne WI (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12(5):5996–6022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Jagdish Narayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Narayan, R.J., Verma, N. (2017). Nanomaterials as Implantable Sensors. In: Cesar Paixão, T., Reddy, S. (eds) Materials for Chemical Sensing. Springer, Cham. https://doi.org/10.1007/978-3-319-47835-7_6

Download citation

Publish with us

Policies and ethics