Skip to main content

Membrane Technologies for Sensing and Biosensing

  • Chapter
  • First Online:
Materials for Chemical Sensing

Abstract

Membranes are ubiquitous in life encapsulating and regulating the content of all cells and have pervaded society, from large-scale industrial such as seawater desalination to medical applications such as haemodialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akther N et al (2015) Recent advancements in forward osmosis desalination: a review. Chem Eng J 281:502–522

    Article  Google Scholar 

  2. Xu G-R et al (2015) Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes. J Membr Sci 493:428–443

    Article  Google Scholar 

  3. Zhou D et al (2015) Development of lower cost seawater desalination processes using nanofiltration technologies—a review. Desalination 376:109–116

    Article  Google Scholar 

  4. van Rijn P et al (2013) Challenges and advances in the field of self-assembled membranes. Chem Soc Rev 42(16):6578–6592

    Article  Google Scholar 

  5. Wang Y et al (2013) When worlds collide: interactions at the interface between biological systems and synthetic cationic conjugated polyelectrolytes and oligomers. Langmuir 29(34):10635–10647

    Article  Google Scholar 

  6. Weingart J, Vabbilisetty P, Sun X-L (2013) Membrane mimetic surface functionalization of nanoparticles: methods and applications. Adv Colloid Interface Sci 197:68–84

    Article  Google Scholar 

  7. Bratov A, Abramova N (2010) Chemical sensors and biosensors based on impedimetric interdigitated electrode array transducers. In: Harrison RV (ed) Chemical sensors: properties, performance and applications. Nova Science Publisher Inc, New York, pp 93–117

    Google Scholar 

  8. Davies ML et al (1992) Polymer membranes in clinical sensor applications 1. An overview of membrane-function. Biomaterials 13(14):971–978

    Article  Google Scholar 

  9. Zajoncova L, Pospiskova K (2009) Membranes for amperometric biosensors. Chem Listy 103(4):291–301

    Google Scholar 

  10. Major KJ et al (2014) Filter-based chemical sensors for hazardous materials. In: Bishop SS, Isaacs JC (eds) Detection and sensing of mines, explosive objects, and obscured targets, XIX

    Google Scholar 

  11. Sierra C et al (2014) Multicolour PbSe sensors for analytical applications. Sens Actuators B-Chem 190:464–471

    Article  Google Scholar 

  12. Ansari AA et al (2010) Prospects of nanotechnology in clinical immunodiagnostics. Sensors 10(7):6535–6581

    Article  Google Scholar 

  13. Soldatkin AP et al (2013) Biosensors. A quarter of a century of R&D experience. Biopolym. Cell 29(3):188–206

    Google Scholar 

  14. Allan JTS, Prest LE, Easton EB (2015) The sulfonation of polyvinyl chloride: synthesis and characterization for proton conducting membrane applications. J Membr Sci 489:175–182

    Article  Google Scholar 

  15. Pankratova N et al (2015) Potentiometric sensing array for monitoring aquatic systems. Environ Sci Process Impacts 17(5):906–914

    Article  Google Scholar 

  16. Vashist SK et al (2011) Technology behind commercial devices for blood glucose monitoring in diabetes management: a review. Anal Chim Acta 703(2):124–136

    Article  Google Scholar 

  17. Alegret S et al (1999) The strategy of biosensor surface renewal: past, present and future. Quim Anal (Barcelona) 18:23–29

    Google Scholar 

  18. Arwin H (2014) Adsorption of proteins at solid surfaces. In: Hinrichs K, Eichhorn KJ (eds) Ellipsometry of functional organic surfaces and films. Springer, Berlin, pp 29–46

    Chapter  Google Scholar 

  19. Cho WK, Kang SM, Lee JK (2014) Non-biofouling polymeric thin films on solid substrates. J Nanosci Nanotechnol 14(2):1231–1252

    Article  Google Scholar 

  20. Gavalas VG, Berrocal MJ, Bachas LG (2006) Enhancing the blood compatibility of ion-selective electrodes. Anal Bioanal Chem 384(1):65–72

    Article  Google Scholar 

  21. Karyakin AA et al (2002) Optimal environment for glucose oxidase in perfluorosulfonated ionomer membranes: improvement of first-generation biosensors. Anal Chem 74(7):1597–1603

    Article  Google Scholar 

  22. Treloar PH, Christie IM, Vadgama PM (1995) Engineering the right membranes for electrodes at the biological interface—solvent-cast and electropolymerized. Biosens Bioelectron 10(1–2):195–201

    Article  Google Scholar 

  23. Ciobanu M et al (2009) Aromatic polysulfones used in sensor applications. Rev Adv Mater Sci 22(1–2):89–96

    Google Scholar 

  24. Reddy SM, Gangadharan B, Manini J (2004) Amperometric sensor study of the selectivity of poly(vinyl chloride) membranes plasticised with surfactants and liquid crystals. Anal Chim Acta 508(1):71–78

    Article  Google Scholar 

  25. Reddy SM, Vadgama PM (1997) A study of the permeability properties of surfactant modified poly(vinyl chloride) membranes. Anal Chim Acta 350(1–2):67–76

    Article  Google Scholar 

  26. Reddy SM, Vadgama PM (1997) Ion exchanger modified PVC membranes selectivity studies and response amplification of oxalate and lactate enzyme electrodes. Biosens Bioelectron 12(9–10):1003–1012

    Article  Google Scholar 

  27. Brglez P et al (2014) Spin-coating for optical-oxygen-sensor preparation. Mater Technol 48(2):181–188

    Google Scholar 

  28. Karpitschka S, Weber CM, Riegler H (2015) Spin casting of dilute solutions: vertical composition profile during hydrodynamic-evaporative film thinning. Chem Eng Sci 129:243–248

    Article  Google Scholar 

  29. Han JH et al (2007) Glucose biosensor with a hydrophilic poly-urethane (HPU) blended with polyvinyl alcohol/vinyl butyral copolymer (PVAB) outer membrane. Sens Actuators B-Chem 123(1):384–390

    Article  Google Scholar 

  30. Julkapli NM, Akil HM, Ahmad Z (2011) Preparation, properties and applications of chitosan-based biocomposites/blend materials: a review. Compos Interf 18(6):449–507

    Article  Google Scholar 

  31. Naghib SM et al (2012) Investigation of a biosensor based on phenylalanine dehydrogenase immobilized on a polymer-blend film for phenylketonuria diagnosis. Electroanalysis 24(2):407–417

    Article  Google Scholar 

  32. Zapotoczny S (2012) Stimuli responsive polymers for nanoengineering of biointerfaces. Nanotechnol Regenerative Med Methods Protoc 811:51–78

    Article  Google Scholar 

  33. Reddy SM, Vadgama PM (1997) Surfactant-modified poly(vinyl chloride) membranes as biocompatible interfaces for amperometric enzyme electrodes. Anal Chim Acta 350(1–2):77–89

    Article  Google Scholar 

  34. Kyrolainen M, Reddy SM, Vadgama PM (1997) Blood compatibility and extended linearity of lactate enzyme electrode using poly(vinyl chloride) outer membranes. Anal Chim Acta 353(2–3):281–289

    Article  Google Scholar 

  35. Movileanu L (2014) Watching single proteins using engineered nanopores. Protein Pept Lett 21(3):235–246

    Article  Google Scholar 

  36. Wang Q et al (2015) Biological recognition with bio-inspired smart nanopores and nanochannels based on polymer membrane. Sci Adv Mater 7(10):2147–2167

    Article  Google Scholar 

  37. Guo Z et al (2011) Application of biomimetic nanopore fabricated in self-supported membrane in analytical chemistry. Prog Chem 23(10):2103–2112

    Google Scholar 

  38. Fink D et al (2014) Coupled chemical reactions in dynamic nanometric confinement: V. The influence of Li+ and F ions on etching of nuclear tracks in polymers. Radiat Eff Defects Solids 169(5):396–417

    Article  Google Scholar 

  39. Fink D et al (2012) Optimization of transport processes in etched track-based biosensors. Radiat Eff Defects Solids 167(8):548–568

    Article  Google Scholar 

  40. Zhang Y et al (2015) Nanoporous membranes generated from self-assembled block polymer precursors: Quo Vadis? J Appl Polym Sci 132(21)

    Google Scholar 

  41. Aram E, Mehdipour-Ataei S (2016) A review on the micro- and nanoporous polymeric foams: preparation and properties. Int J Polym Mater Polym Biomater 65(7):358–375

    Article  Google Scholar 

  42. Toccafondi C et al (2015) Biomedical applications of anodic porous alumina. Curr Nanosci 11(5):572–580

    Article  Google Scholar 

  43. Jarolimova Z et al (2016) Potassium ion-selective fluorescent and pH independent nanosensors based on functionalized polyether macrocycles. Chem Sci 7(1):525–533

    Article  Google Scholar 

  44. Olsen G, Ulstrup J, Chi Q (2016) Crown-ether derived graphene hybrid composite for membrane free potentiometric sensing of alkali metal ions. ACS Appl Mater Interf 8(1):37–41

    Article  Google Scholar 

  45. Saiapina OY et al (2016) Development of conductometric sensor based on 25,27-Di-(5-thio-octyloxy)calix 4 arene-crown-6 for determination of ammonium. Nanoscale Res Lett 11(1):105

    Article  Google Scholar 

  46. Ayanoglu MN et al (2015) Salicylate ion-selective electrode based on a calix 4 arene as ionophore. Electroanalysis 27(7):1676–1684

    Article  Google Scholar 

  47. Aydogan A, Akar A (2012) Tri- and pentacalix 4 pyrroles: synthesis, characterization and their use in the extraction of halide salts. Chem Eur J 18(7):1999–2005

    Article  Google Scholar 

  48. Reddy SM, Higson SP, Vadgama PM (1997) Amperometric enzyme electrode for the determination of urine oxalate. Anal Chim Acta 343(1–2):59–68

    Article  Google Scholar 

  49. Liu M et al (2011) A stable sandwich-type amperometric biosensor based on poly(3,4-ethylenedioxythiophene)-single walled carbon nanotubes/ascorbate oxidase/nafion films for detection of L-ascorbic acid. Sens Actuators B-Chem 159(1):277–285

    Article  Google Scholar 

  50. Tang H et al (2004) Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Anal Biochem 331(1):89–97

    Article  Google Scholar 

  51. Christie IM et al (1997) The use of chemical sensor systems for sampling, selectivity and speciation. In: Nikolelis DP et al (eds) Biosensors for direct monitoring of environmental pollutants in field, vol 38. Springer, Berlin, pp 41–56

    Google Scholar 

  52. Christie IM et al (1997) Plasticized PVC as a high efficiency selective barrier for the amperometric detection of phenolics. Electroanalysis 9(14):1078–1082

    Article  Google Scholar 

  53. Reddy SM, Vadgama PM (1997) Membranes to improve amperometric sensor characteristics. In: Kress-Rogers E (ed) Handbook of biosensors and electronic noses: medicine, food, and the environment. CRC Press, Boca Raton, pp 111–135

    Google Scholar 

  54. Gong JP et al (1991) Electroconductive organogel. 3. Preparation and properties of a charge-transfer complex gel in an organic-solvent. Macromolecules 24(19):5246–5250

    Article  Google Scholar 

  55. Guiseppi-Elie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31(10):2701–2716

    Article  Google Scholar 

  56. Bai H et al (2011) Graphene oxide/conducting polymer composite hydrogels. J Mater Chem 21(46):18653–18658

    Article  Google Scholar 

  57. Greco F et al (2013) Liquid single crystal elastomer/conducting polymer bilayer composite actuator: modelling and experiments. Soft Matter 9(47):11405–11416

    Article  Google Scholar 

  58. Kang D-W et al (2015) Enhancement of primary neuronal cell proliferation using printing-transferred carbon nanotube sheets. J Biomed Mater Res, Part A 103(5):1746–1754

    Article  Google Scholar 

  59. Wei Q-B et al (2008) Assembly of Cu nanoparticles in a polyacrylamide grafted poly(vinyl alcohol) copolymer matrix and vapor-induced response. Sens Actuators B-Chem 134(1):49–56

    Article  Google Scholar 

  60. Moschou EA et al (2006) Voltage-switchable artificial muscles actuating at near neutral pH. Sens Actuators B-Chem 115(1):379–383

    Article  Google Scholar 

  61. Lira LM, de Torresi SIC (2005) Conducting polymer-hydrogel composites for electrochemical release devices: synthesis and characterization of semi-interpenetrating polyaniline-polyacrylamide networks. Electrochem Commun 7(7):717–723

    Article  Google Scholar 

  62. Nikpour M et al (1999) Porous conducting membranes based on polypyrrole-PMMA composites. Synth Met 99(2):121–126

    Article  Google Scholar 

  63. Brahim S, Narinesingh D, Guiseppi-Elie A (2001) Amperometric determination of cholesterol in serum using a biosensor of cholesterol oxidase contained within a polypyrrole-hydrogel membrane. Anal Chim Acta 448(1–2):27–36

    Article  Google Scholar 

  64. Brahim SI et al (2002) Design and characterization of a galactose biosensor using a novel polypyrrole-hydrogel composite membrane. Anal Lett 35(5):797–812

    Article  Google Scholar 

  65. Gerritsen M et al (2000) Biocompatibility evaluation of sol-gel coatings for subcutaneously implantable glucose sensors. Biomaterials 21(1):71–78

    Article  Google Scholar 

  66. Nederberg F et al (2006) Biocompatible and biodegradable phosphorylcholine ionomers with reduced protein adsorption and cell adhesion. J Biomater Sci Polym Ed 17(6):605–614

    Article  Google Scholar 

  67. Snyder TA et al (2007) Preclinical biocompatibility assessment of the EVAHEART ventricular assist device: coating comparison and platelet activation. J Biomed Mater Res, Part A 81A(1):85–92

    Article  Google Scholar 

  68. Sun F et al (2011) Improving hydrophilicity and protein resistance of silicone hydrogel by plasma induced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine. e-Polymer 11(1):463–473

    Article  Google Scholar 

  69. Zhang T et al (2008) Synthesis and characterization of phosphoryl-choline-capped poly(epsilon-caprolactone)-poly(ethylene oxide) di-block co-polymers and its surface modification on polyurethanes. J Biomater Sci Polym Ed 19(4):509–524

    Article  Google Scholar 

  70. Abraham S et al (2005) Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility. Biomaterials 26(23):4767–4778

    Article  Google Scholar 

  71. Brahim S, Narinesingh D, Guiseppi-Elie A (2003) Synthesis and hydration properties of pH-sensitive p(HEMA)-based hydrogels containing 3-(trimethoxysilyl)propyl methacrylate. Biomacromolecules 4(3):497–503

    Article  Google Scholar 

  72. Boztas AO, Guiseppi-Elie A (2009) Immobilization and release of the redox mediator ferrocene monocarboxylic acid from within cross-linked p(HEMA-co-PEGMA-co-HMMA) hydrogels. Biomacromolecules 10(8):2135–2143

    Article  Google Scholar 

  73. Ramanavicius A et al (1999) Polypyrrole entrapped quinohemoprotein alcohol dehydrogenase. Evidence for direct electron transfer via conducting-polymer chains. Anal Chem 71(16):3581–3586

    Article  Google Scholar 

  74. Reddy SM, Sette G, Phan Q (2011) Electrochemical probing of selective haemoglobin binding in hydrogel-based molecularly imprinted polymers. Electrochim Acta 56(25):9203–9208

    Google Scholar 

  75. Bueno L et al (2014) MIP-based electrochemical protein profiling. Sens Actuators B-Chem 204:88–95

    Article  Google Scholar 

  76. El-Sharif HF, Phan QT, Reddy SM (2014) Enhanced selectivity of hydrogel-based molecularly imprinted polymers (HydroMIPs) following buffer conditioning. Anal Chim Acta 809:155–161

    Article  Google Scholar 

  77. El-Sharif HF, Aizawa H, Reddy SM (2015) Spectroscopic and quartz crystal microbalance (QCM) characterisation of protein-based MIPs. Sens Actuators B-Chem 206:239–245

    Article  Google Scholar 

  78. Reddy SM et al (2013) Protein detection using hydrogel-based molecularly imprinted polymers integrated with dual polarisation interferometry. Sens Actuators B-Chem 176:190–197

    Article  Google Scholar 

  79. Reuber J, Reinhardt H, Johannsmann D (2006) Formation of surface-attached responsive gel layers via electrochemically induced free-radical polymerization. Langmuir 22(7):3362–3367

    Article  Google Scholar 

  80. Wu S, Tan W, Xu H (2010) Protein molecularly imprinted polyacrylamide membrane: for hemoglobin sensing. Analyst 135(10):2523–2527

    Article  Google Scholar 

  81. Xu S et al (2013) Stimuli-responsive molecularly imprinted polymers: versatile functional materials. J Mater Chem C 1(29):4406–4422

    Article  Google Scholar 

  82. Gong C, Lam MH-W, Yu H (2006) The fabrication of a photoresponsive molecularly imprinted polymer for the photoregulated uptake and release of caffeine. Adv Funct Mater 16(13):1759–1767

    Article  Google Scholar 

  83. Qin L et al (2009) Macroporous thermosensitive imprinted hydrogel for recognition of protein by metal coordinate interaction. Anal Chem 81(17):7206–7216

    Article  Google Scholar 

  84. El-Sharif HF et al (2015) Highly selective BSA imprinted polyacrylamide hydrogels facilitated by a metal-coding MIP approach. Acta Biomater 28:121–127

    Article  Google Scholar 

  85. Zhang W et al (2012) Thermo-sensitive imprinted polymer coating CdTe quantum dots for target protein specific recognition. Chem Commun 48(12):1757–1759

    Article  Google Scholar 

  86. Aburto J, Le Borgne S (2004) Selective adsorption of dibenzothiophene sulfone by an imprinted and stimuli-responsive chitosan hydrogel. Macromolecules 37(8):2938–2943

    Article  Google Scholar 

  87. Suedee R et al (2006) Temperature sensitive dopamine-imprinted (N, N-methylene-bis-acrylamide cross-linked) polymer and its potential application to the selective extraction of adrenergic drugs from urine. J Chromatogr A 1114(2):239–249

    Article  Google Scholar 

  88. Huang ZM et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  Google Scholar 

  89. De Cesare F, Macagnano A (2015) Electrospinning-based nanobiosensors. In: Macagnano A, Zampetti E, Kny E (eds) Electrospinning for high performance sensors. Springer, Berlin, pp 225–279

    Google Scholar 

  90. Jiang T et al (2015) Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 46:1–24

    Article  Google Scholar 

  91. Pelipenko J, Kocbek P, Kristl J (2015) Critical attributes of nanofibers: preparation, drug loading, and tissue regeneration. Int J Pharm 484(1–2):57–74

    Article  Google Scholar 

  92. Sridhar R et al (2015) Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 44(3):790–814

    Article  Google Scholar 

  93. Li DP, Frey MW, Baeumner AJ (2006) Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies. J Membr Sci 279(1–2):354–363

    Article  Google Scholar 

  94. Mahmoudifard M et al (2016) Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications. Mater Sci Eng C-Mater Bio Appl 58:586–594

    Article  Google Scholar 

  95. Wu CM, Yu SA, Lin SL (2014) Graphene modified electrospun poly(vinyl alcohol) nanofibrous membranes for glucose oxidase immobilization. Express Polym Lett 8(8):565–573

    Article  Google Scholar 

  96. Su X et al (2013) A new amperometric glucose biosensor based on one-step electrospun poly(vinyl alcohol)/chitosan nanofibers. J Biomed Nanotechnol 9(10):1776–1783

    Article  Google Scholar 

  97. Wang N et al (2013) Electrospun fibro-porous polyurethane coatings for implantable glucose biosensors. Biomaterials 34(4):888–901

    Article  Google Scholar 

  98. Zhou C et al (2013) Development of a fast and sensitive glucose biosensor using iridium complex-doped electrospun optical fibrous membrane. Anal Chem 85(2):1171–1176

    Article  Google Scholar 

  99. Ji X et al (2014) “Ready-to-use” hollow nanofiber membrane-based glucose testing strips. Analyst 139(24):6467–6473

    Article  Google Scholar 

  100. Costa RR, Mano JF (2014) Polyelectrolyte multilayered assemblies in biomedical technologies. Chem Soc Rev 43(10):3453–3479

    Article  Google Scholar 

  101. Karabulut E et al (2012) Adhesive layer-by-layer films of carboxymethylated cellulose nanofibril dopamine covalent bioconjugates inspired by marine mussel threads. ACS Nano 6(6):4731–4739

    Article  Google Scholar 

  102. Donot F et al (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87(2):951–962

    Article  Google Scholar 

  103. Martins GV, Mano JF, Alves NM (2011) Dual responsive nanostructured surfaces for biomedical applications. Langmuir 27(13):8415–8423

    Article  Google Scholar 

  104. Zankovych S et al (2013) The effect of polyelectrolyte multilayer coated titanium alloy surfaces on implant anchorage in rats. Acta Biomater 9(1):4926–4934

    Article  Google Scholar 

  105. Rivera-Gil P et al (2009) Intracellular processing of proteins mediated by biodegradable polyelectrolyte capsules. Nano Lett 9(12):4398–4402

    Article  Google Scholar 

  106. Szarpak A et al (2010) Designing hyaluronic acid-based layer-by-layer capsules as a carrier for intracellular drug delivery. Biomacromolecules 11(3):713–720

    Article  Google Scholar 

  107. Fujie T et al (2010) Dual therapeutic action of antibiotic-loaded nanosheets for the treatment of gastrointestinal tissue defects. Biomaterials 31(24):6269–6278

    Article  Google Scholar 

  108. Kim Y, Rajagopalan P (2010) 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes. Plos One 5(11):e15456

    Article  Google Scholar 

  109. Sher P, Custodio CA, Mano JF (2010) Layer-by-layer technique for producing porous nanostructured 3D constructs using moldable freeform assembly of spherical templates. Small 6(23):2644–2648

    Article  Google Scholar 

  110. Kreft O et al (2007) Polymer microcapsules as mobile local pH-sensors. J Mater Chem 17(42):4471–4476

    Article  Google Scholar 

  111. Kazakova LI et al (2013) Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes. Anal Bioanal Chem 405(5):1559–1568

    Article  Google Scholar 

  112. Abd-Elnaiem AM et al (2016) Tailoring the porous nanostructure of porous anodic alumina membrane with the impurity control. J Alloy Compd 659:270–278

    Article  Google Scholar 

  113. Das C, Jain B, Krishnamoorthy K (2015) Phenols from green tea as a dual functional coating to prepare devices for energy storage and molecular separation. Chem Commun 51(58):11662–11664

    Article  Google Scholar 

  114. Wei T-H et al (2013) Porous polymer nanostructures fabricated by the surface-induced phase separation of polymer solutions in anodic aluminum oxide templates. Langmuir 29(32):9972–9978

    Article  Google Scholar 

  115. Saji VS et al (2015) Localized drug delivery of selenium (Se) using nanoporous anodic aluminium oxide for bone implants. J Mater Chem B 3(35):7090–7098

    Article  Google Scholar 

  116. Zhang J et al (2015) Preparation and size control of sub-100 nm pure nanodrugs. Nano Lett 15(1):313–318

    Article  Google Scholar 

  117. Zhang D et al (2011) Polypyrrole/ZnS Core/shell coaxial nanowires prepared by anodic aluminum oxide template methods. J Phys Chem C 115(5):2360–2365

    Article  Google Scholar 

  118. Raj V, Silambarasan J, Rajakumar P (2014) Electrocatalytic reduction of ortho nitrobenzaldehyde using modified aluminum electrode and its determination. J Environ Sci 26(7):1531–1539

    Article  Google Scholar 

  119. Santos A, Kumeria T, Losic D (2013) Nanoporous anodic aluminum oxide for chemical sensing and biosensors. TrAC, Trends Anal Chem 44:25–38

    Article  Google Scholar 

  120. Sola L et al (2015) Characterization of porous alumina membranes for efficient, real-time, flow through biosensing. J Membr Sci 476:128–135

    Article  Google Scholar 

  121. Mutalib Md Jani A et al (2009) Nanoporous anodic aluminium oxide membranes with layered surface chemistry. Chem Commun (Cambridge, England) 21:3062–3064

    Article  Google Scholar 

  122. Vlassiouk I, Takmakov P, Smirnov S (2005) Sensing DNA hybridization via ionic conductance through a nanoporous electrode. Langmuir 21(11):4776–4778

    Article  Google Scholar 

  123. Szczepanski V, Vlassiouk I, Smirnov S (2006) Stability of silane modifiers on alumina nanoporous membranes. J Membr Sci 281(1–2):587–591

    Article  Google Scholar 

  124. Li P-F et al (2009) Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method. J Membr Sci 337(1–2):310–317

    Article  Google Scholar 

  125. Jain P et al (2007) High-capacity purification of his-tagged proteins by affinity membranes containing functionalized polymer brushes. Biomacromolecules 8(10):3102–3107

    Article  Google Scholar 

  126. Deme B, Marchal D (2005) Polymer-cushioned lipid bilayers in porous alumina. Eur Biophys J Biophys Lett 34(2):170–179

    Article  Google Scholar 

  127. Dotzauer DM et al (2006) Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports. Nano Lett 6(10):2268–2272

    Article  Google Scholar 

  128. Oliveira GB et al (2008) Enzyme immobilization on anodic aluminum oxide/polyethyleneimine or polyaniline composites. React Funct Polym 68(1):27–32

    Article  Google Scholar 

  129. Takmakov P, Vlassiouk I, Smirnov S (2006) Application of anodized aluminum in fluorescence detection of biological species. Anal Bioanal Chem 385(5):954–958

    Article  Google Scholar 

  130. Feng C-L et al (2007) Graded-bandgap quantum-dot-modified nanotubes: a sensitive biosensor for enhanced detection of DNA hybridization. Adv Mater 19(15):1933–1936

    Article  Google Scholar 

  131. Kumeria T, Losic D (2012) Controlling interferometric properties of nanoporous anodic aluminium oxide. Nanoscale Res Lett 7(1):1

    Article  Google Scholar 

  132. Kumeria T et al (2012) Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Biosens Bioelectron 35(1):167–173

    Article  Google Scholar 

  133. Shimomura T et al (2009) Amperometric determination of choline with enzyme immobilized in a hybrid mesoporous membrane. Talanta 78(1):217–220

    Article  Google Scholar 

  134. Schmitt EK et al (2008) Electrically insulating pore-suspending membranes on highly ordered porous alumina obtained from vesicle spreading. Soft Matter 4(2):250–253

    Article  Google Scholar 

  135. Grieshaber D et al (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8(3):1400–1458

    Article  Google Scholar 

  136. Grieshaber D et al (2008) Vesicles for signal amplification in a biosensor for the detection of low antigen concentrations. Sensors 8(12):7894–7903

    Article  Google Scholar 

  137. Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6(10):615–624

    Article  Google Scholar 

  138. Venkatesan BM et al (2011) Lipid bilayer coated Al2O3 nanopore sensors: towards a hybrid biological solid-state nanopore. Biomed Microdevices 13(4):671–682

    Article  Google Scholar 

  139. Wang L et al (2009) A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection. Talanta 78(3):647–652

    Article  Google Scholar 

  140. Chae I et al (2015) Electronic nose for recognition of volatile vapor mixtures using a nanopore-enhanced opto-calorimetric spectroscopy. Anal Chem 87(14):7125–7132

    Article  Google Scholar 

  141. Yim C et al (2015) CO2-selective nanoporous metal-organic framework microcantilevers. Sci Rep 5:10674

    Article  Google Scholar 

  142. Lee M et al (2015) Surface wetting of superhydrophobic aluminum oxide nanostructures investigated using the fiber-optic spectrometer and quartz crystal microbalance. Sens Actuators B-Chem 220:799–804

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrayal Medapati Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Reddy, S.M. (2017). Membrane Technologies for Sensing and Biosensing. In: Cesar Paixão, T., Reddy, S. (eds) Materials for Chemical Sensing. Springer, Cham. https://doi.org/10.1007/978-3-319-47835-7_4

Download citation

Publish with us

Policies and ethics