Experiments on Clustering and Synchronous Patterns in a Configurable Network of Chaotic Oscillators

  • Soudeh Yaghouti
  • Carlo Petrarca
  • Massimiliano de MagistrisEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 191)


We present new experimental results on a recently developed set-up, implementing a dynamically configurable network of chaotic oscillators with Chua’s circuits as nodes. The set-up has been designed and tailored to easily perform real time experiments on complex networks with arbitrary topology . We focus here on the emergence of symmetry related synchronization patterns, as well as on the switching among different clusters due to modification of the network structure and/or coupling strength, that are experimentally analyzed for the first time in such type of networks. The observed behavior confirms basic theoretical expectations on small networks, as recently appeared in literature. Moreover the scalability to higher complexity network, as allowed by the considered set-up, is briefly discussed.


Complex networks Chaotic oscillators Synchronization Clustering 


  1. 1.
    Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Pecora, L.M., Sorrentino, F., Hagerstrom, A.M., Murphy, T.E., Roy, R.: Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079 (2014)Google Scholar
  6. 6.
    Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78(22), 4193 (1997)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Zhou, C., Kurths, J.: Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. Phys. Rev. Lett. 88(23), 230602 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Zhou, C., Kurths, J.: Hierarchical synchronization in complex networks with heterogeneous degrees. Chaos: an Interdisciplinary. J. Nonlinear Sci. 16(1), 015104 (2006)zbMATHGoogle Scholar
  9. 9.
    Corinto, F., Biey, M., Gilli, M.: Nonlinear coupled CNN models for multiscale image analysis. Int. J. Circuit Theory Appl. 34(1), 77–88 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    de Magistris, M., di Bernardo, M., Di Tucci, E., Manfredi, S.: Synchronization of networks of non-identical Chua’s circuits: analysis and experiments. IEEE Trans. Circuits Syst. I: Regul. Papers 59.5, 1029–1041 (2012)Google Scholar
  11. 11.
    Colandrea, M., de Magistris, M., di Bernardo, M., Manfredi, S.: A fully reconfigurable experimental setup to study complex networks of Chua’s circuits. In: Proceedings of NDES 2012 Nonlinear Dynamics of Electronic Systems (VDE), pp. 1–4 (2012)Google Scholar
  12. 12.
    Petrarca, C., Yaghouti, S., de Magistris, M.: Experimental dynamics observed in a configurable complex network of chaotic oscillators. In: Nonlinear Dynamics of Electronic Systems, pp. 203–210. Springer International Publishing, Berlin (2014)Google Scholar
  13. 13.
    Petrarca, C., Yaghouti, S., Corti, L., de Magistris, M.: Analogic realization of a non-linear network with re-configurable structure as paradigm for real time analysis of complex dynamics. In: Advances in Neural Networks: Computational and Theoretical Issues, pp. 375–382. Springer International Publishing, Berlin (2015)Google Scholar
  14. 14.
    de Magistris, M., di Bernardo, M., Manfredi, S., Petrarca, C., Yaghouti, S.: Modular experimental setup for real-time analysis of emergent behavior in networks of Chua’s circuits. Int. J. Circuit Theory Appl. 44, 8, 1551–1571 (2016)Google Scholar
  15. 15.
    Fu, C., Lin, W., Huang, L., Wang, X.: Synchronization transition in networked chaotic oscillators: the viewpoint from partial synchronization. Phys. Rev. E 89(5), 052908 (2014)Google Scholar
  16. 16.
    Ao, B., Zheng, Z.: Partial synchronization on complex networks. EPL (Europhys. Lett.) 74(2), 229 (2006)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Soudeh Yaghouti
    • 1
  • Carlo Petrarca
    • 1
  • Massimiliano de Magistris
    • 1
    Email author
  1. 1.Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’InformazioneUniversity of Naples FEDERICO IINaplesItaly

Personalised recommendations