Advertisement

Cryptanalysis of a Random Number Generator Based on a Chaotic Oscillator

  • Salih ErgünEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 191)

Abstract

This paper introduces an algebraic cryptanalysis of a random number generator (RNG) based on a chaotic oscillator. An attack system is proposed to discover the security weaknesses of the chaos-based RNG. Convergence of the attack system is proved using master slave synchronization scheme where the only information available are the structure of the RNG and a scalar time series observed from the chaotic oscillator. Simulation and numerical results verifying the feasibility of the attack system are given. The RNG does not fulfill NIST-800-22, Diehard and Big Crush statistical test suites, the previous and the next bit can be predicted, while the same output bit sequence of the RNG can be reproduced.

Keywords

Chaotic System Target System Chaotic Oscillator Chaotic Signal Security Weakness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jun, B., Kocher, P.: The intel random number generator. Cryptography Research, Inc., White Paper Prepared for Inter Corporation. http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf (1999)
  2. 2.
    Schrift, A.W., Shamir, A.: On the Universality of the next bit test. In: Proceeding of the CRYPTO, pp. 394–408 (1990)Google Scholar
  3. 3.
    Schneier, B.: Applied Cryptography, \(2^{nd}\) edn. Wiley, New York (1996)Google Scholar
  4. 4.
    Göv, N.C., Mıhçak, M.K., Ergün, S.: True random number generation via sampling from flat band-limited Gaussian processes. IEEE Trans. Circuits Syst. I 58(5), 1044–1051 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Petrie, C.S., Connelly, J.A.: A noise-based IC random number generator for applications in cryptography. IEEE Trans. Circuits Syst. I 47(5), 615–621 (2000)CrossRefGoogle Scholar
  6. 6.
    Bucci, M., Germani, L., Luzzi, R., Trifiletti, A., Varanonuovo, M.: A high speed oscillator-based truly random number source for cryptographic applications on a smart card IC. IEEE Trans. Comput. 52, 403–409 (2003)CrossRefGoogle Scholar
  7. 7.
    Güler, Ü., Ergün, S.: A high speed IC random number generator based on phase noise in ring oscillators. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS ’10), pp. 425–428 (2010)Google Scholar
  8. 8.
    Stojanovski, T., Pihl, J., Kocarev, L.: Chaos-based random number generators-part II\(:\) practical realization. IEEE Trans. Circuits Syst. I 48(3), 382–385 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Callegari, S., Rovatti, R., Setti, G.: Embeddable ADC-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos. IEEE Trans. Signal Process. 53(2), 793–805 (2005)Google Scholar
  10. 10.
    Tavas, V., Demirkol, A.Ş., Özog̃uz, S., Kilinç, S., Toker, A., Zeki, A.: An IC random number generator based on chaos. In: Proceedings of the International Conference on Applied Electronics (AE’10), pp. 1–4 (2010)Google Scholar
  11. 11.
    Ergün, S., Güler, Ü., Asada, K.: A high speed IC truly random number generator based on chaotic sampling of regular waveform. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E94-A(1), 180–190 (2011)Google Scholar
  12. 12.
    Security Requirements for Cryptographic Modules. NIST, Boulder, CO (1994)Google Scholar
  13. 13.
    National Institute of Standard and Technology: A statistical test suite for random and pseudo random number generators for cryptographic applications. NIST-800-22. http://csrc.nist.gov/rng/SP800-22b.pdf (2001)
  14. 14.
    L’Ecuyer, P.: Universit’e de Montr’eal. Empirical Testing of Random Number Generators. http://www.iro.umontreal.ca/~lecuyer/ (2002)
  15. 15.
    Marsalgia, G.: Diehard: A Battery of Tests of Randomness. http://stat.fsu.edu/~geo/diehard.htm (1997)
  16. 16.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hasler, M.: Synchronization principles and applications. In: Toumazou, C. (ed.) Tutorials IEEE International Symposium on Circuits and Systems (ISCAS ’94), London, England, pp. 314327 (1994)Google Scholar
  18. 18.
    Ergün, S.: Cryptanalysis of a double scroll based “True” random bit generator. In: Proceedings of the IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS 15), pp. 1–4 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.ERARGE - Ergünler Co., Ltd. R&D CenterBeşiktaş, İstanbulTurkey

Personalised recommendations