Advertisement

Ultrawideband Microwave 3–7 GHz Chaotic Oscillator Implemented as SiGe Integrated Circuit

  • E. V. EfremovaEmail author
  • A. S. Dmitriev
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 191)

Abstract

Structure of chaotic generator is proposed that provides chaotic oscillations with required form of signal spectrum. A model system on 0.25-\({\upmu }\)m SiGe component library is developed, and IC layout is designed. An experimental sample of microwave chaotic source with bipolar transistor as the active element is fabricated with 0.25-\({\upmu }\)m SiGe process. The system demonstrates generation of ultrawideband chaotic oscillations of 3–7 GHz frequency range. Results of numerical simulation and experimental study of the chip are analyzed.

Keywords

Chaotic Oscillation Wireless Body Area Network Bipolar Transistor Supply Voltage Versus Chaotic Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study is supported in part by the Russian Science Foundation (project 16-19-00084).

References

  1. 1.
    Win, M.Z., Scholtz, R.A.: IEEE Commun. Lett. 2(2), 36 (1998)CrossRefGoogle Scholar
  2. 2.
    A tutorial on ultra wideband technology, IEEE 802.15 Working group submission. IEEE, New York (2005). http://grouper.ieee.org/groups/802/15/pub/2000/Mar00/00082r1P802-15_WG-UWB-Tutorial-1-XtremeSpectrum.pdf Accessed 25 Feb 2016
  3. 3.
    TG4a proposal for low rate DS-UWB (DS-UWB-LR). IEEE, New York (2005). http://grouper.ieee.org/groups/802/15/pub/2005/15-05-0021-00-004a-low-rate-ds-uwb-tg4a.ppt Accessed 25 Feb 2016
  4. 4.
    Lampe J.: Introduction to chirp spread spectrum (CSS) technology. IEEE, New York (2004). http://grouper.ieee.org/groups/802/15/pub/2004/15-04-0353-00-004a-chirp-spread-spectrum-technology.ppt Accessed 25 Feb 2016
  5. 5.
    Gerrits, J., et al.: EURASIP J. Adv. Sign. Proc. 3, 382 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Multi-band OFDM physical layer proposal for IEEE 802.15 task group 3a. IEEE, New York (2003). http://www.ieee802.org/15/pub/2003/Jul03/03268r2P802-15_TG3a-Multi-band-CFP-Document.pdf Accessed 25 Feb 2016
  7. 7.
    Dmitriev, A.S., et al.: J. Comm. Technol. Electron. 46(2), 207 (2001)MathSciNetGoogle Scholar
  8. 8.
    IEEE Standard for Information technology Telecommunications and information exchange between systems Local and metropolitan area networks Specific requirements; Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs); Amendment 1: Add Alternate PHYs, (2007)Google Scholar
  9. 9.
    IEEE 802.15.6-2012. IEEE standard for local and metropolitan area networks - Part 15.6: wireless body area networks. (2012). http://standards.ieee.org/about/get/802/802.15.html Accessed 25 Feb 2016
  10. 10.
    Dmitriev, A.S., et al.: J. Comm. Technol. Electron. 58(12), 1113 (2013)CrossRefGoogle Scholar
  11. 11.
    Dmitriev, A.S., et al.: Int. J. Bifurc. Chaos 6(5), 851 (1996)CrossRefGoogle Scholar
  12. 12.
    Dmitriev, A.S., Efremova, E.V.: Transistornye generatory chaosa s zadannoi formoi spectra moschnosty kolebanii (Transistor chaos generators with prescribed shape of power spectrum). Radiotekhnika. 8, 67 (2005)Google Scholar
  13. 13.
    Dmitriev, A.S., et al.: J. Comm. Technol. Electron. 52(10), 1137 (2007)CrossRefGoogle Scholar
  14. 14.
    Dmitriev, A.S., et al.: Tech. Phys. Lett. 40(2), 1 (2014)Google Scholar
  15. 15.
    Dmitriev, A.S., et al.: Tech. Phys. Lett. 35(12), 1090 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Dmitriev, A.S., et al.: J. Comm. Technol. Electron. 55(7), 765 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Kotelnikov Institute of Radio Engineering and Electronics of RASMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyMoscow Reg.Russia

Personalised recommendations