Advertisement

Topological Complex Networks Properties for Gene Community Detection Strategy: DRD2 Case Study

  • Anna Monda
  • Nicola AmorosoEmail author
  • Teresa Maria Altomare Basile
  • Roberto Bellotti
  • Alessandro Bertolino
  • Giuseppe Blasi
  • Pasquale Di Carlo
  • Annarita Fanizzi
  • Marianna La Rocca
  • Tommaso Maggipinto
  • Alfonso Monaco
  • Marco Papalino
  • Giulio Pergola
  • Sabina Tangaro
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 191)

Abstract

Gene interactions can suitably be modeled as communities through weighted complex networks. However, the problem to efficiently detect these communities , eventually gaining biological insight from them, is still an open question. This paper presents a novel data-driven strategy for community detection and tests it on the specific case study of DRD2 gene coding for the D2 dopamine receptor, which plays a prominent role in risk for Schizophrenia . We adopt a combined use of centrality and topological properties to detect an optimal network partition. We find that 21 genes belongs with our target community with probability \(P \ge 90\,\%\). The robustness of the partition is assessed with two independent methodologies: (i) fuzzy c-means and (ii) consensus analyses . We use the first one to measure how strong the membership of these genes to the DRD2 community is and the latter to confirm the stability of the detected partition. These results show an interesting reduction (\({\sim }80\,\%\)) of the target community size. Moreover, to allow this validation on different case studies, the proposed methodology is available on an open cloud infrastructure, according to the Software as a Service paradigm (SaaS).

Keywords

Graph theory Fuzzy c-means Coexpression networks Community detection 

References

  1. 1.
    Horvath, S., Dong, J.: Geometric interpretation of gene coexpression network analysis. PLoS Comput. Biol. 4(8), e1000117 (2008)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Sieberts, S.K., Schadt, E.E.: Moving toward a system genetics view of disease. Mamm. Genome 18(6–7), 389–401 (2007)CrossRefGoogle Scholar
  3. 3.
    Aittokallio, T., et al.: Computational strategies for analyzing data in gene expression microarray experiments. J. Bioinf. Comput. Biol. 1(03), 541–586 (2003)Google Scholar
  4. 4.
    Hudson, T.J., et al.: International network of cancer genome projects. Nature 464(7291), 993–998 (2010)Google Scholar
  5. 5.
    Nicotri, S., et al.: Complex networks and public funding: the case of the 2007–2013 Italian program. EPJ Data Sci. 4(1), 1 (2015)Google Scholar
  6. 6.
    Amoroso, N., et al.: Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool. Phys. Med. Biol. 60(22), 8851 (2015)CrossRefGoogle Scholar
  7. 7.
    Ravasz, E.: Detecting hierarchical modularity in biological networks. Comput. Syst. Biol. 145–160 (2009)Google Scholar
  8. 8.
    Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9(1), 1 (2008)CrossRefGoogle Scholar
  9. 9.
    Barabási, A.-L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011)CrossRefGoogle Scholar
  10. 10.
    Colantuoni, C., et al.: Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478(7370), 519–523 (2011)Google Scholar
  11. 11.
    Dunn, R., Dudbridge, F., Sanderson, C.M.: The use of edge-betweenness clustering to investigate biological function in protein interaction networks. BMC Bioinf. 6(1), 1 (2005)CrossRefGoogle Scholar
  12. 12.
    Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30(2), 136–145 (2008)CrossRefGoogle Scholar
  13. 13.
    Pinney, J.W., David, R.W.: Betweenness-based decomposition methods for social and biological networks. Interdiscip. Stat. Bioinf. 87–90 (2006)Google Scholar
  14. 14.
    Newman, M.E.J., Michelle, G.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)Google Scholar
  15. 15.
    Lancichinetti, A., Santo, F.: Consensus clustering in complex networks. Sci. Rep. 2 (2012)Google Scholar
  16. 16.
    Kaufman, L., Peter, J.R.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. Wiley, New Jersey (2009)Google Scholar
  17. 17.
    Lancichinetti, A., et al.: Finding statistically significant communities in networks. PloS one 6(4), e18961 (2011)Google Scholar
  18. 18.
    Meyer-Lindenberg, A.: The future of fMRI and genetics research. NeuroImage 62(2), 1286–1292 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anna Monda
    • 1
  • Nicola Amoroso
    • 2
    • 3
    Email author
  • Teresa Maria Altomare Basile
    • 2
    • 3
  • Roberto Bellotti
    • 2
    • 3
  • Alessandro Bertolino
    • 1
    • 4
    • 5
  • Giuseppe Blasi
    • 4
  • Pasquale Di Carlo
    • 1
  • Annarita Fanizzi
    • 2
  • Marianna La Rocca
    • 2
  • Tommaso Maggipinto
    • 2
    • 3
  • Alfonso Monaco
    • 3
  • Marco Papalino
    • 1
  • Giulio Pergola
    • 1
  • Sabina Tangaro
    • 3
  1. 1.Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di SensoUniversità Degli Studi di Bari “Aldo Moro”BariItaly
  2. 2.Dipartimento Interateneo di Fisica “Michelangelo Merlin”Università Degli Studi di Bari “Aldo Moro”BariItaly
  3. 3.Istituto Nazionale di Fisica Nucleare - Sezione di BariBariItaly
  4. 4.Azienda Ospedaliero-Universitaria Consorziale PoliclinicoBariItaly
  5. 5.pRED, NORD DTA, F. Hoffman-La Roche Ltd.BaselSvizzera

Personalised recommendations