Advertisement

A Multiplex Network Model to Characterize Brain Atrophy in Structural MRI

  • Marianna La Rocca
  • Nicola AmorosoEmail author
  • Roberto Bellotti
  • Domenico Diacono
  • Alfonso Monaco
  • Anna Monda
  • Andrea Tateo
  • Sabina Tangaro
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 191)

Abstract

We developed a multiplex network approach for the description and recognition of structural brain changes in the context of the early diagnosis of Alzheimer disease (AD). Our techniques can supply a convenient mathematical framework to model structural inter- and intra-subject brain similarities in magnetic resonance images (MRI) within Alzheimer disease studies. We used a set of 100 structural T1 brain scans, from subjects of the Alzheimer’s Disease Neuroimaging Initiative, including AD patients, normal controls (NC) and mild cognitive impairment (MCI) subjects. We evaluated the classification performances including the comparison of two state-of-the-art techniques, Random Forests (RF) and Support Vector Machines (SVM) . Our results show that multiplex networks can significantly improve the classification performance obtained only with the use of structural features. They can also effectively distinguish NC, MCI and AD patterns with an area under the receiver-operating-characteristic curve (AUC) \(\ge 0.89 \pm 0.04\).

Keywords

Support Vector Machine Mild Cognitive Impairment Classification Performance Feature Subset Relative Standard Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lebedev, A., Westman, E., Van Westen, G., Kramberger, M., Lundervold, A., Aarsland, D., Soininen, H., Kloszewska, I., Mecocci, P., Tsolaki, M., et al.: Random forest ensembles for detection and prediction of alzheimer’s disease with a good between-cohort robustness. NeuroImage: Clin. 6(115), 237–125 (2014)Google Scholar
  2. 2.
    Amoroso, N., Errico, R., Bellotti, R.: PRISMA-CAD : Fully automated method for computer-aided diagnosis of dementia based on structural MRI data. In Proceedings of the Computer-aided Diagnosis of Dementia Based on Structural MRI Data, MICCAI 2014, pp. 16–24 (2014)Google Scholar
  3. 3.
    Magnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini-Issac, M., Colliot, O., Sarazin, M., Dubois, B., Lehéricy, S., Benali, H.: Support vector machine based classification of alzheimer’s disease from whole-brain anatomical mri. Neuroradiology 51(2), 73–83 (2009)CrossRefGoogle Scholar
  4. 4.
    Bellotti, R., Pascazio, S.: Advanced physical methods in brain research. Eur. Phys. J. Plus 127(145) (2012)Google Scholar
  5. 5.
    Tijms, B.M., Wink, A.M., De Haan, W., van der Flier, W.M., Stam, C.J., Scheltens, P., Barkhof, F.: Alzheimers disease: connecting findings from graph theoretical studies of brain networks. Neurobiol. Aging 34, 2023–2036 (2013)CrossRefGoogle Scholar
  6. 6.
    Szell, M., Lambiotte, R., Thurner, S.: Multirelational organization of large-scale social networks in an online world. Proc. Natl. Acad. Sci. USA 107, 13636–13641 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E 89 (2014)Google Scholar
  8. 8.
    Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: Fsl. NeuroImage 62(2), 782–790 (2012)Google Scholar
  9. 9.
    Ishii, K., Kawachi, T., Sasaki, H., Kono, A.K., Fukuda, T., Kojima, Y., Mori, E.: Voxel-based morphometric comparison between early- and late-onset mild Alzheimer’s disease and assessment of diagnostic performance of z score images. Am. J. Neurorabiol. 26, 333–340 (2005)Google Scholar
  10. 10.
    Bron, E.E., Smits, M., van der Flier, W.M., Vrenken, H., Barkhof, F., Scheltens, P., Papma, J.M., Steketee, R.M., Orellana, C.M., Meijboom, R., et al.: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural mri: The caddementia challenge. NeuroImage 111, 562–579 (2015)CrossRefGoogle Scholar
  11. 11.
    Suk, H.I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. Med. Image Comput. Comput. Assist. Interv. MICCAI 8150, 583–590 (2013)Google Scholar
  12. 12.
    Yao, Z., Zhang, Y., Lin, L., Zhou, Y., Xu, C., Jiang, T.: Alzheimer’s Disease Neuroimaging Initiative. Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput. Biol. 6 (2010)Google Scholar
  13. 13.
    Li, Y., Wu. Y., Wang, G., Shi, F., Zhou, L., Lin, W., Shen, D.: Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features. Neurobiol. Aging 33 (2012)Google Scholar
  14. 14.
    Manichetti, G., Remondini, D., Panzarasa, P., Mondragón, R.J., Bianconi, G.: Weighted multiplex networks. PLOS ONE 9(6) (2014)Google Scholar
  15. 15.
    Tangaro, S., Amoroso, N., Brescia, M., Cavuoti, S., Chincarini, A., Errico, R., Inglese, P., Longo, G., Maglietta, R., Tateo, A., Riccio, G., Bellotti, R.: Feature selection based on machine learning in MRIs for hippocampal segmentation. In: Computational and Mathematical Methods in Medicine (2015)Google Scholar
  16. 16.
    DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 837–845 (1988)Google Scholar
  17. 17.
    Fischl, B.: FreeSurfer. NeuroImage 62(2), 774–781 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marianna La Rocca
    • 1
  • Nicola Amoroso
    • 1
    Email author
  • Roberto Bellotti
    • 1
  • Domenico Diacono
    • 2
  • Alfonso Monaco
    • 3
  • Anna Monda
    • 4
  • Andrea Tateo
    • 1
  • Sabina Tangaro
    • 2
  1. 1.Dipatimento di Fisica “M. Merlin”Università Degli Studi di Bari “A. Moro”, Istituto Nazionale di Fisica Nucleare, sez. di BariBariItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, sez. di BariBariItaly
  3. 3.Dipatimento di Fisica “M. Merlin”Istituto Nazionale di Fisica Nucleare, sez. di BariBariItaly
  4. 4.Department of Basic Medical Sciences, Neuroscience and Sense OrgansUniversità degli Studi di Bari “Aldo Moro”BariItaly

Personalised recommendations