Advertisement

Temporal Excitation Patterns on the Cerebral Cortex as a Result of Migraine Modeling

  • Julia M. KroosEmail author
  • Ibai Diez
  • Jesus M. Cortes
  • Sebastiano Stramaglia
  • Luca Gerardo-Giorda
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 191)

Abstract

The complex, highly individual, geometry of the cerebral cortex in humans presents a major challenge in studying the spreading of spontaneous neuronal activity. Recent computational advances [1] allow to simulate the propagation of depolarization waves on the macroscale and for individual geometries, reconstructed from accurate medical imaging as MRI, with high levels of detail. In this paper we take advantage of such technique to study the temporal excitation patterns that follow the passage of a depolarization wave on the cerebral cortex.

Keywords

Firing Rate Transient Global Amnesia Excitation Pattern Excited Region Depolarization Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Bizkaia Talent and European Commission through COFUND under the grant BRAhMS – Brain Aura Mathematical Simulation– (AYD-000-285), and also by the Basque Government through the BERC 2014–2017 program, and by the Spanish Ministry of Economics and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-0323. JMC acknowledges financial support from Ikerbasque: The Basque Foundation for Science and Euskampus at UPV/EHU.

References

  1. 1.
    Kroos, J.M., Diez, I., Cortes, J.M., Stramaglia, S., Gerardo-Giorda, L.: Geometry shapes propagation: assessing the presence and absence of cortical symmetries through a computational model of cortical spreading depression. Front. Comput. Neurosci. 10, 6 (2016). doi: 10.3389/fncom.2016.00006 CrossRefGoogle Scholar
  2. 2.
    Leão, A.: Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7, 391–396 (1944)Google Scholar
  3. 3.
    Leão, A.: Further observations on the spreading depression of activity in the cerebral cortex. J. Neurophysiol. 10, 409–414 (1947)Google Scholar
  4. 4.
    de Tommaso, M., Ambrosini, A., Brighina, F., Coppola, G., Perrotta, A., Pierelli, F., Sandrini, G., Valeriani, M., Marinazzo, D., Stramaglia, S., Schoenen, J.: Altered processing of sensory stimuli in patients with migraine. Nat. Rev. Neurol. 10, 144–155 (2014)CrossRefGoogle Scholar
  5. 5.
    Hadjikhani, N., Sanchez del Rio, M., Wu, O., Schwartz, D., Bakker, D., Fischl, B., Kwong, K.K., Cutrer, F.M., Rosen, B.R., Tootell, R.B.H., Sorensen, A.G., Maskowitz, M.A.: Mechnisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl. Acad. Sci. USA 98, 4687–4692 (2001). doi: 10.1073/pnas.071582498 ADSCrossRefGoogle Scholar
  6. 6.
    Richter, F., Lehmenkühler, A.: Cortical spreading depression (csd):a neurophysiological correlate of migraine aura. Der Schmerz 22, 544–550 (2008). doi: 10.1007/s00482-008-0653-9 CrossRefGoogle Scholar
  7. 7.
    Sramka, M., Brozek, G., Bures, J., Nadvornik, P.: Functional ablation by spreading depression: possible use in human stereotactic neurosurgery. Appl. Neurophysiol. 30, 589–596 (1977)Google Scholar
  8. 8.
    Costa, C., Tozzi, A., Rainero, I., Cupini, L.M., Calabresi, P., Ayata, C., Sarchielli, P.: Cortical spreading depression as a target for anti-migraine agents. J. Headache Pain 14, 62 (2013). doi: 10.1186/1129-2377-14-62 CrossRefGoogle Scholar
  9. 9.
    Dahlem, M., Schmidt, B., Bojak, I., Boie, F., Kneer, S., Hadjikhani, N., Kurths, J.: Cortical hot spots and labyrinths: why cortical neuromodulation for episodic migraine with aura should be personalized. Front Comput. Neurosci. 9 (2015). doi: 10.3389/fncom.2015.00029
  10. 10.
    Cortes, J., Marinazzo, D., Series, P., Oram, M., Sejnowski, T., van Rossum, M.: The effect of neural adaptation on population coding accuracy. J. Comput. Neurosci. 32, 387–402 (2012). doi: 10.1007/s10827-011-0358-4 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rogers, J., McCulloch, A.: A collocation - galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41, 743–757 (1994). doi: 10.1109/10.310090 CrossRefGoogle Scholar
  12. 12.
    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)ADSCrossRefGoogle Scholar
  13. 13.
    Porooshani, H., Porooshani, A., Gannon, L., Kyle, G.: Speed of progression of migrainous visual aura measured by sequential field assessment. Neuro-Ophthalmol. 28, 101–105 (2004). doi: 10.1076/noph.28.2.101.23739 CrossRefGoogle Scholar
  14. 14.
    Quarteroni, V., Valli, A.: Numer. Approx. Partial Differ. Equ. Springer, Berlin (1994)Google Scholar
  15. 15.
    Fischl, B.: Freesurfer. Neuroimage 62, 774–781 (2012)CrossRefGoogle Scholar
  16. 16.
    Diez, I., Bonifazi, P., Escudero, I., Mateos, B., Muñoz, M.A., Stramaglia, S., Cortes, J.M.: A novel brain partition highlights the modular skeleton shared by structure and function. Sci. Rep. 5, 10532 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Brodmann, K.: Brodmann’s Localisation in the Cerebral Cortex - The Principles of Comparative Localisation in the Cerebral Cortex Based on Cytoarchitectonics. Springer, Heidelberg (2006)Google Scholar
  18. 18.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)Google Scholar
  19. 19.
    Yoshida, K., Xu, M., Natsubori, A., Mimura, M., Takata, N., Tanaka, K.F.: Identification of the extent of cortical spreading depression propagation by Npas4 mRNA expression. Neurosci. Res. 98, 1–8 (2015). doi: 10.1016/j.neures.2015.04.003 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Julia M. Kroos
    • 1
    Email author
  • Ibai Diez
    • 2
  • Jesus M. Cortes
    • 3
    • 4
    • 5
  • Sebastiano Stramaglia
    • 6
    • 7
  • Luca Gerardo-Giorda
    • 8
  1. 1.Basque Center for Applied MathematicsBasque Country, BilbaoSpain
  2. 2.Biocruces Health Research InstituteCruces University HospitalBarakaldoSpain
  3. 3.Biocruces Health Research Institute BarakaldoBarakaldoSpain
  4. 4.Departamento de Biologia Celular e HistologiaUniversity of the Basque CountryLeioaSpain
  5. 5.Ikerbasque: The Basque Foundation for ScienceBilbaoSpain
  6. 6.Dipartimento di FisicaUniversità di BariBariItaly
  7. 7.INFN, Sezione di BariBariItaly
  8. 8.Basque Center for Applied MathematicsBilbaoSpain

Personalised recommendations