Advertisement

Network Physiology: From Neural Plasticity to Organ Network Interactions

  • Plamen Ch. IvanovEmail author
  • Kang K. L. Liu
  • Aijing Lin
  • Ronny P. Bartsch
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 191)

Abstract

The fundamental question in the new field of Network Physiology is how physiologic states and functions emerge from networked interactions among diverse physiological systems. We present recent efforts in developing new methodology and theoretical framework adequate to identify and quantify dynamical interactions among systems with very different characteristics and signal outputs. In this chapter, we demonstrate the utility of the novel concept of time delay stability and a first Network Physiology approach: to investigate new aspects of neural plasticity at the level of brain rhythm interactions in response to changes in physiologic state ; to characterize dynamical features of brain-organ communications as a new signature of neuroautonomic control; and to establish basic principles underlying hierarchical reorganization in the network of organ-organ communications for different physiologic states and functions. The presented results are initial steps in developing an atlas of dynamical interactions among key organ systems in the human body.

Keywords

Frequency Band Network Interaction Granger Causality Sleep Stage Neural Plasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge support from W.M. Keck Foundation, National Institutes of Health (NIH Grant 1R01- HL098437), the Office of Naval Research (ONR Grant 000141010078), the US-Israel Binational Science Foundation (BSF Grant 2012219), EC-FP7 Marie Curie Fellowship (IIF 628159).

References

  1. 1.
    Ashkenazy, Y., Hausdorff, J., Ivanov, P.Ch., Stanley, H.E.: A stochastic model of human gait dynamics. Phys. A 316(1–4), 662–670 (2002). doi: 10.1016/S0378-4371(02)01453-X
  2. 2.
    Bartsch, R.P., Ivanov, P.Ch.: Coexisting forms of coupling and phase-transitions in physiological networks. Commun. Comput. Inf. Sci. 438, 270–287 (2014)Google Scholar
  3. 3.
    Bartsch, R.P., Schumann, A.Y., Kantelhardt, J.W., Penzel, T., Ivanov, P.Ch.: Phase transitions in physiologic coupling. Proc. Natl. Acad. Sci. USA 109(26), 10181–10186 (2012). doi: 10.1073/pnas.1204568109
  4. 4.
    Bartsch, R.P., Liu, K.K.L., Ma, Q.D.Y., Ivanov, P.Ch.: Three independent forms of cardio-respiratory coupling: transitions across sleep stages. Comput. Cardiol. 41, 781–784 (2014)Google Scholar
  5. 5.
    Bartsch, R.P., Liu, K.K.L., Bashan, A., Ivanov, P.C.: Network physiology: how organ systems dynamically interact. PLoS ONE 10(11), e0142,143 (2015). doi: 10.1371/journal.pone.0142143
  6. 6.
    Bashan, A., Bartsch, R.P., Kantelhardt, J.W., Havlin, S., Ivanov, P.Ch.: Network physiology reveals relations between network topology and physiological function. Nat. Commun. 3, 702 (2012)Google Scholar
  7. 7.
    Bian, Z., Li, Q., Wang, L., Lu, C., Yin, S., Li, X.: Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes. Front Aging Neurosci. 6, 11 (2014). doi: 10.3389/fnagi.2014.00011
  8. 8.
    Buchman, T.G.: Complex systems science in biomedicine. In: Physiologic Failure: Multiple Organ Dysfunction Syndrome, pp. 631–640. Kluwer Academic/Plenum Publishers, New York (2006)Google Scholar
  9. 9.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009). doi: 10.1038/nrn2575
  10. 10.
    Bunde, A., Havlin, S., Kantelhardt, J.W., Penzel, T., Peter, J.H., Voigt, K.: Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Phys. Rev. Lett. 85(17), 3736–3739 (2000). doi: 10.1103/PhysRevLett.85.3736
  11. 11.
    Carskadon, M.: Principles and practice of sleep medicine. In: Guidelines for the Multiple Sleep Latency Test (MSLT): A Standard Measure of Sleepiness, pp. 962–966. WB Saunders Company, Philadelphia (1994)Google Scholar
  12. 12.
    Chen, Z., Hu, K., Stanley, H.E., Novak, V., Ivanov, P.Ch.: Cross-correlation of instantaneous phase increments in pressure-flow fluctuations: applications to cerebral autoregulation. Phys. Rev. E 73(3 Pt 1), 031,915 (2006)Google Scholar
  13. 13.
    Chorlian, D.B., Rangaswamy, M., Porjesz, B.: EEG coherence: topography and frequency structure. Exp. Brain Res. 198(1), 59–83 (2009). doi: 10.1007/s00221-009-1936-9
  14. 14.
    Dumont, M., Jurysta, F., Lanquart, J.P., Migeotte, P.F., van de Borne, P., Linkowski, P.: Interdependency between heart rate variability and sleep EEG: linear/non-linear? Clin. Neurophysiol. 115(9), 2031–2040 (2004). doi: 10.1016/j.clinph.2004.04.007
  15. 15.
    Faes, L., Nollo, G., Jurysta, F., Marinazzo, D.: Information dynamics of brain–heart physiological networks during sleep. New J. Phys. 16, 105,005 (2014)Google Scholar
  16. 16.
    Faes, L., Marinazzo, D., Jurysta, F., Nollo, G.: Linear and non-linear brain-heart and brain-brain interactions during sleep. Physiol. Meas. 36(4), 683–698 (2015). doi: 10.1088/0967-3334/36/4/683
  17. 17.
    Ferri, R., Rundo, F., Bruni, O., Terzano, M.G., Stam, C.J.: The functional connectivity of different EEG bands moves towards small-world network organization during sleep. Clin. Neurophysiol. 119(9), 2026–2036 (2008). doi: 10.1016/j.clinph.2008.04.294
  18. 18.
    Ivanov, P.Ch.: Scale-invariant aspects of cardiac dynamics - observing sleep stages and circadian phases. IEEE Eng. Med. Biol. 26(6), 33–37 (2007). doi: 10.1109/MEMB.2007.907093
  19. 19.
    Ivanov, P.Ch., Bartsch, R.P.: Network Physiology: Mapping Interactions Between Networks of Physiologic Networks, pp. 203–222. Springer International Publishing, Switzerland (2014)Google Scholar
  20. 20.
    Ivanov, P.Ch., Rosenblum, M.G., Peng, C.K., Mietus, J., Havlin, S., Stanley, H.E., Goldberger, A.L.: Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature 383, 323–327 (1996)Google Scholar
  21. 21.
    Ivanov, P.Ch., Amaral, L.A.N., Goldberger, A.L., Stanley, H.E.: Stochastic feedback and the regulation of biological rhythms. Europhys. Lett. 43, 363–368 (1998)Google Scholar
  22. 22.
    Ivanov, P.Ch., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzik, Z.R., Stanley, H.E.: Multifractality in human heartbeat dynamics. Nature 399(6735), 461–465 (1999). doi: 10.1038/20924
  23. 23.
    Ivanov, P.Ch., Bunde, A., Amaral, L.A.N., Havlin, S., Fritsch-Yelle, J., Baevsky, R.M., Stanley, H.E., Goldberger, A.L.: Sleep-wake differences in scaling behavior of the human heartbeat: analysis of terrestrial and long-term space flight data. Europhys. Lett. 48(5), 594–600 (1999). doi: 10.1209/epl/i1999-00525-0
  24. 24.
    Ivanov, P.Ch., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Stanley, H.E., Struzik, Z.: From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos 11, 641–652 (2001)Google Scholar
  25. 25.
    Kantelhardt, J.W., Ashkenazy, Y., Ivanov, P.Ch., Bunde, A., Havlin, S., Penzel, T., Peter, J.H., Stanley, H.E.: Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments. Phys. Rev. E 65(5), 051,908 (2002). doi: 10.1103/PhysRevE.65.051908
  26. 26.
    Kantelhardt, J.W., Havlin, S., Ivanov, P.Ch.: Modeling transient correlations in heartbeat dynamics during sleep. Europhys. Lett. 62(2), 147–153 (2003)Google Scholar
  27. 27.
    Karasik, R., Sapir, N., Ashkenazy, Y., Ivanov, P.Ch., Dvir, I., Lavie, P., Havlin, S.: Correlation differences in heartbeat fluctuations during rest and exercise. Phys. Rev. E 66(6), 062,902 (2002). doi: 10.1103/PhysRevE.66.062902
  28. 28.
    Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29(2–3), 169–195 (1999)CrossRefGoogle Scholar
  29. 29.
    Liu, K.K.L., Bartsch, R.P., Lin, A., Mantegna, R.N., Ivanov, P.C.: Plasticity of brain wave network interactions and evolution across physiologic states. Front. Neural Circuits 9, 62 (2015). doi: 10.3389/fncir.2015.00062
  30. 30.
    Liu, K.K.L., Bartsch, R.P., Ma, Q.D.Y., Ivanov, P.Ch.: Major component analysis of dynamic networks of physiologic organ interactions. J. Phys.: Conf. Ser. 640(1), 012,013 (2015). http://dx.doi.org/10.1088/1742-6596/640/1/012013, http://stacks.iop.org/1742-6596/640/i=1/a=012013
  31. 31.
    Lin, A., Liu, K.K.L., Bartsch, R.P., Ivanov, P.C.: Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374(2067), 20150,182 (2016). doi: 10.1098/rsta.2015.0182
  32. 32.
    Long, X., Arends, J.B., Aarts, R.M., Haakma, R., Fonseca, P., Rolink, J.: Time delay between cardiac and brain activity during sleep transitions. Appl. Phys. Lett. 106(14), 143,702 (2015). doi: 10.1063/1.4917221
  33. 33.
    McCraty, R., Atkinson, M., Tomasino, D., Bradley, R.T.: The coherent heart: heart-brain interactions, psychophysiological coherence, and the emergence of system-wide order. Integral Rev. 5(2), 10–115 (2009)Google Scholar
  34. 34.
    Pikovsky, A.S., Rosenblum, M.G., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  35. 35.
    Piper, D., Schiecke, K., Pester, B., Benninger, F., Feucht, M., Witte, H.: Time-variant coherence between heart rate variability and EEG activity in epileptic patients: an advanced coupling analysis between physiological networks. New J. Phys. 16(11), 115,012 (2014)Google Scholar
  36. 36.
    Rechtschaffen, A., Kales, A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. US Department of Health, Education, and Welfare, Bethesda, MD (1968)Google Scholar
  37. 37.
    Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76(11), 1804–1807 (1996)ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78(22), 4193–4196 (1997). doi: 10.1103/PhysRevLett.78.4193
  39. 39.
    Schmitt, D.T., Stein, P.K., Ivanov, P.Ch.: Stratification pattern of static and scale-invariant dynamic measures of heartbeat fluctuations across sleep stages in young and elderly. IEEE Trans. Biomed. Eng. 56(5), 1564–1573 (2009). doi: 10.1109/TBME.2009.2014819
  40. 40.
    Schumann, A.Y., Bartsch, R.P., Penzel, T., Ivanov, P.Ch., Kantelhardt, J.W.: Aging effects on cardiac and respiratory dynamics in healthy subjects across sleep stages. Sleep 33(7), 943–955 (2010)Google Scholar
  41. 41.
    Song, L.Z., Schwartz, G.E., Russek, L.G.: Heart-focused attention and heart-brain synchronization: energetic and physiological mechanisms. Altern. Ther. Health Med. 4(5), 44–52, 54–60, 62 (1998)Google Scholar
  42. 42.
    Stankovski, T., Ticcinelli, V., McClintock, P.V.E., Stefanovska, A.: Coupling functions in networks of oscillators. New J. Phys. 17, 035,002 (2015)Google Scholar
  43. 43.
    Stramaglia, S., Cortes, J.M., Marinazzo, D.: Synergy and redundancy in the granger causal analysis of dynamical networks. New J. Phys. 16, 105,003 (2014)Google Scholar
  44. 44.
    Tanaka, H., Hayashi, M., Hori, T.: Topographical characteristics and principal component structure of the hypnagogic EEG. Sleep 20(7), 523–534 (1997)Google Scholar
  45. 45.
    Valenza, G., Greco, A., Gentili, C., Lanata, A., Sebastiani, L., Menicucci, D., Gemignani, A., Scilingo, E.P.: Combining electroencephalographic activity and instantaneous heart rate for assessing brain-heart dynamics during visual emotional elicitation in healthy subjects. Philos. Trans. R. Soc. A 374, 20150176 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Valenza, G., Toschi, N., Barbieri, R.: Uncovering brain-heart information through advanced signal and image processing. Philos. Trans. R. Soc. A 374, 20160020 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    Xu, L., Chen, Z., Hu, K., Stanley, H.E., Ivanov, P.Ch.: Spurious detection of phase synchronization in coupled nonlinear oscillators. Phys. Rev. E 73(6 Pt 2), 065,201 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Plamen Ch. Ivanov
    • 1
    • 2
    Email author
  • Kang K. L. Liu
    • 1
    • 3
  • Aijing Lin
    • 1
    • 4
  • Ronny P. Bartsch
    • 1
    • 5
  1. 1.Keck Laboratory for Network Physiology, Department of PhysicsBoston UniversityBostonUSA
  2. 2.Harvard Medical School and Division of Sleep MedicineBrigham and Women’s HospitalBostonUSA
  3. 3.Department of NeurologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA
  4. 4.Department of MathematicsBeijing Jiaotong UniversityBeijingChina
  5. 5.Department of PhysicsBar-Ilan UniversityRamat GanIsrael

Personalised recommendations