Advertisement

Hebbian Learning Clustering with Rulkov Neurons

  • Jenny Held
  • Tom Lorimer
  • Carlo Albert
  • Ruedi StoopEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 191)

Abstract

The recent explosion of high dimensional, high resolution ‘big-data’ from automated bioinformatics measurement techniques demands new methods for unsupervised data processing. An essential analysis step is the identification of groups of similar data, or ‘clusters’, in noisy high-dimensional data spaces, as this permits to perform some analysis steps at the group level. Popular clustering algorithms introduce an undesired cluster shape bias, require prior knowledge of the number of clusters, and are unable to properly deal with noise. Manual data gating, often used to assist these methods, is based on low-dimensional projection techniques, which is prone to obscure the underlying data structure. While Hebbian Learning Clustering successfully overcomes all of these limitations (by using only local similarities to infer global structure), previous implementations were unsuited to deal with big data sets. Here, we present a novel implementation based on realistic neuronal dynamics that removes also this obstacle. By a performance that scales favourably compared to all standard clustering algorithms, unbiased large data analysis becomes feasible on standard desktop hardware.

Keywords

Coupling Strength Data Item Hebbian Learn Human Bone Marrow Cell Average Synchrony 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bendall, S.C., Simonds, E.F., Qiu, P., Amir, el-AD., Krutzik, P.O., Finck, R., Bruggner, R.V., Melamed, R., Trejo, A., Ornatsky, O.I., Balderas, R.S., Plevritis, S.K., Sachs, K., Peer, D., Tanner, S.D., Nolan, G.P.: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011)Google Scholar
  2. 2.
    Bréhélin, L., Gascuel, O., Martin, O.: Using repeated measurements to validate hierarchical gene clusters. Bioinformatics 24, 682–688 (2008)CrossRefGoogle Scholar
  3. 3.
    Ge, Y., Sealfon, S.C.: FlowPeaks: a fast unsupervised clustering for flow cytometry data via k-means and density peak finding. Bioinformatics 28, 2052–2058 (2012)CrossRefGoogle Scholar
  4. 4.
    Gomez, F., Stoop, R.L., Stoop, R.: Universal dynamical properties preclude standard clustering in a large class of biochemical data. Bioinformatics 30, 1–8 (2014)CrossRefGoogle Scholar
  5. 5.
    Gutiérrez, R., Amann, A., Assenza, S., Gómez-Gardeñes, J., Latora, V., Boccaletti, S.: Emerging meso- and macroscales from synchronization of adaptive networks. Phys. Rev. Lett. 107, 234103 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Jaccard, P.: Lois de distribution florale dans la zone alpine. Bull. Soc. Vaud. Sci. Nat. 38, 67–130 (1902)Google Scholar
  7. 7.
    Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11, 37–50 (1912)CrossRefGoogle Scholar
  8. 8.
    Landis, F., Ott, T., Stoop, R.: Hebbian self-organizing integrate-and-fire networks for data clustering. Neural Comput. 22, 273–288 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lorimer, T., Gomez, F., Stoop, R.: Two universal physical principles shape the power-law statistics of real-world networks. Sci. Rep. 5, 12353 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Levine, J.H., Simonds, E.F., Bendall, S.C., Davis, K.L., Amir, el-AD., Tadmor, M.D., Litvin, O., Fienberg, H.G., Jager, A., Zunder, E.R., Finck, R., Gedman, A.L., Radtke, I., Downing, J.R., Peer, D., Nolan, G.P.: Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015)Google Scholar
  11. 11.
    McQueen, J.B.: Some methods for classification and analysis of multivariate observations. Proc. Fifth Berkeley Symp. Math. Statist. Prob. 1, 281–297 (1967)MathSciNetGoogle Scholar
  12. 12.
    Ott, T., Kern, A., Schuffenhauer, A., Popov, M., Acklin, P., Jacoby, E., Stoop, R.: Sequential superparamagnetic clustering for unbiased classification of high-dimensional chemical data. J. Chem. Inf. Comput. Sci. 44, 1358–1364 (2004)CrossRefGoogle Scholar
  13. 13.
    Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65, 041922 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Stoop, R., Benner, P., Uwate, Y.: Real-world existence and origins of the spiral organization of shrimp-shaped domains. Phys. Rev. Lett. 105, 074102 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Stoop, R., Martignoli, S., Benner, P., Stoop, R.L., Uwate, Y.: Shrimps: occurrence, scaling and relevance. Intl. J. Bif. Chaos 22, 1230032 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)zbMATHGoogle Scholar
  18. 18.
    Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wong, D.S.V., Wong, F.K., Wood, G.R.: A multi-stage approach to clustering and imputation of gene expression profiles. Bioinformatics 23, 998–1005 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jenny Held
    • 1
    • 2
    • 3
  • Tom Lorimer
    • 2
    • 3
  • Carlo Albert
    • 1
  • Ruedi Stoop
    • 2
    • 3
    Email author
  1. 1.EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  2. 2.Institute of Neuroinformatics and Institute for Computational ScienceUniversity of ZürichZurichSwitzerland
  3. 3.ETH ZürichZurichSwitzerland

Personalised recommendations