Advertisement

Nonlinear Systems Characterization Using Phase Space Density

  • T. L. CarrollEmail author
  • J. M. Byers
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 191)

Abstract

Stationary dynamical systems have invariant measures (or densities) that are characteristic of the particular dynamical system. We develop a method to characterize this density by partitioning the attractor into the smallest regions in phase space that contain information about the structure of the attractor. To accomplish this, we develop a statistic that tells us if we get more information about our data by dividing a set of data points into partitions rather than just lumping all the points together. We use this method to show that not only can we detect small changes in an attractor from a circuit experiment, but we can also distinguish between a large set of numerically generated chaotic attractors designed by Sprott.

References

  1. 1.
    Abarbanel, H.D.I., et al.: The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65, 1331–1392 (1993)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Brown, R., et al.: Modeling and synchronizing chaotic systems from time-series data. Phys. Rev. E 49, 3784–3800 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Buzug, T., Pfister, G.: Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors. Phys. Rev. A 45, 7073 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    Carroll, T.L.: Attractor comparisons based on density. Chaos 25, 013111 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carroll, T.L., Byers, J.M.: Grid-based partitioning for comparing attractors. Phys. Rev. E 93, 042206 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Casdagli, M.: Nonlinear prediction of chaotic time series. Physica D 35, 335–356 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cover, T.M., Thomas, J.M.: Elements of Information Theory. Wiley, New York (2006)zbMATHGoogle Scholar
  8. 8.
    Donner, R.V., et al.: Recurrence-based analysis by means of complex network methods. Int. J. Bifurc. Chaos 21, 1019–1046 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Farmer, J.D.: Information dimension and the probabilistic structure of chaos. Z. Naturforsch. A (Astrophysik, Physik und Physikalische Chemie) 37A, 1304–1325 (1982)ADSMathSciNetGoogle Scholar
  11. 11.
    Farmer, J.D., Sidorowich, J.J.: Predicting chaotic time series. Phys. Rev. Lett. 59, 845–848 (1987)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenom. 9, 189–208 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hunt, B.R., et al.: Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D 230, 112–126 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    King, G.P., et al.: Phase portraits from a time series: a singular system approach. Nucl. Phys. B - Proc. Suppl. 2, 379–390 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Menendez, M.L., et al.: The Jensen–Shannon divergence. J. Frankl. Inst. 334B, 307–318 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Packard, N.H., et al.: Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50, 647–650 (1994)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Suetani, H., et al.: Manifold learning approach for chaos in the dripping faucet. Phys. Rev. E 86, 036209 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Sugihara, G., May, R.M.: Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344, 734–741 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    Todd, M.D., et al.: Using chaotic interrogation and attractor nonlinear cross-prediction error to detect fastener preload loss in an aluminum frame. Chaos: An Interdiscip. J. Nonlinear Sci. 14, 387–399 (2004)CrossRefGoogle Scholar
  22. 22.
    Tufillaro, N.B., et al.: Template analysis for a chaotic NMR laser. Phys. Rev. A 44, R4786–R4788 (1991)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Wood, J., et al.: A behavioral modeling approach to nonlinear model-order reduction for RF/Microwave ICs and systems. IEEE Trans. Microw. Theory Tech. 52, 2274–2284 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.US Naval Research Lab, Code 6392WashingtonUSA
  2. 2.US Naval Research Lab, Code 6395WashingtonUSA

Personalised recommendations