Genomic Approaches for Abiotic Stress Tolerance in Sorghum

  • Santosh DeshpandeEmail author
  • Sujay Rakshit
  • K. G. Manasa
  • Sarita Pandey
  • Rajeev Gupta
Part of the Compendium of Plant Genomes book series (CPG)


Although sorghum is a crop grown under harsh environments, its productivity is adversely affected by various abiotic stresses including drought, temperature extremes, low fertility, and mineral toxicity among others. In recent years a large number of genetic and genomic resources have become available in sorghum, which provide researchers opportunities to relate sequence variations with phenotypic traits of interest and their utilization in sorghum improvement programs. The application of the molecular marker and genomic technologies has shown promise for efficient breeding. However, very few successful examples are available in the public domain of research in this direction. Some of these successes specifically related to application of molecular marker technologies for improving abiotic stresses are explained in this chapter. With recent advances in next-generation sequencing technologies and high-throughput phenotyping platforms/technologies, utilizing the new/advanced mapping populations such as nested-association mapping (NAM), backcross-derived NAM has shown great potential. These recent advancements will be the drivers for integration of genomics technologies in routine breeding programs in the immediate future.


Abiotic stress QTL MAS GWAS NAM Phenotyping 


  1. Aglawe SB, Fakrudin B, Patole CB, Bhairappanavar SB, Koti RV, Krishnaraj PU (2012) Quantitative RT-PCR analysis of 20 transcription factor genes of MADS, ARF, HAP2, MBF and HB families in moisture stressed shoot and root tissues of sorghum. Physiol Mol Biol Plants 18(4):287–300PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anami SE, Zhang LM, Xia Y, Zhang YM, Liu ZQ, Jing HC (2015) Sweet sorghum ideotypes: genetic improvement of stress tolerance. Food Energy Secur 4(1):3–24CrossRefGoogle Scholar
  3. Aneeta, Sanan-Mishra N, Tuteja N, Kumar Sopory S (2002) Salinity- and ABA-induced up-regulation and light-mediated modulation of mRNA encoding glycine-rich RNA-binding protein from Sorghum bicolor. Biochem Biophys Res Commun 296:1063–1068PubMedCrossRefGoogle Scholar
  4. Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89(7):925–940PubMedPubMedCentralCrossRefGoogle Scholar
  5. Balota M, Payne W, Veeragoni S, Stewart B, Rosenow D (2010) Respiration and its relationship to germination, emergence, and early growth under cool temperatures in sorghum. Crop Sci 50:1414–1422CrossRefGoogle Scholar
  6. Bekele WA, Wieckhorst S, Friedt W, Snowdon RJ (2013) High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array. Plant Biotechnol J 11(9):1112–1125PubMedCrossRefGoogle Scholar
  7. Borrell A, Hammer G, Oosterom E (2001) Stay-green: a consequence of the balance between supply and demand for nitrogen during grain filling? Ann Appl Biol 138(1):91–95CrossRefGoogle Scholar
  8. Borrell AK, Hammer GL (2000) Nitrogen dynamics and the physiological basis of stay-green in sorghum. Crop Sci 40(5):1295–1307CrossRefGoogle Scholar
  9. Borrell AK, Hammer GL, Douglas AC (2000a) Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Sci 40(4):1026–1037CrossRefGoogle Scholar
  10. Borrell AK, Hammer GL, Henzell RG (2000b) Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci 40(4):1037–1048CrossRefGoogle Scholar
  11. Borrell AK, Douglas ACL (1996) Maintaining green leaf area in grain sorghum increases yield in a water-limited environment. In: Proceedings of the third australian sorghum conference. Melbourne, Australian Institute of Agricultural Science, Occasional Publication (No. 93), pp 323–326Google Scholar
  12. Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin YR (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165(1):367–386PubMedPubMedCentralGoogle Scholar
  13. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM (2009) The genetic architecture of maize f owering time. Science 325:714–718 Google Scholar
  14. Burow G, Burke JJ, Xin Z, Franks CD (2011) Genetic dissection of early- season cold tolerance in sorghum (Sorghum bicolor (L.) Moench). Mol Breed 28:391–402CrossRefGoogle Scholar
  15. Burow GB, Franks CD, Acosta-Martinez V, Xin Z (2009) Molecular mapping and characterization of BLMC, a locus for profue wax (bloom) and enhanced cuticular features of Sorghum (Sorghum bicolor( L.) Moench.). Theor Appl Genet 118:423–431Google Scholar
  16. Chopra R, Burow G, Hayes C, Emendack Y, Xin Z, Burke J (2015) Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. BMC Genom 16(1):1CrossRefGoogle Scholar
  17. Cisse ND, Ejeta G (2003) Genetic variation and relationships among seedling vigor traits in sorghum. Crop Sci 43(3):824–828CrossRefGoogle Scholar
  18. Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262(3):579–588PubMedCrossRefGoogle Scholar
  19. Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.)(I. Uptake and distribution of aluminum in root apices). Plant Physiol 103(3):685–693PubMedPubMedCentralCrossRefGoogle Scholar
  20. Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101(42):15249–15254PubMedPubMedCentralCrossRefGoogle Scholar
  21. Delhaize E, Taylor P, Hocking PJ, Simpson RJ, Ryan PR, Richardson AE (2009) Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotechnol J 7(5):391–400PubMedCrossRefGoogle Scholar
  22. Doumbia MD, Hossner LR, Onken AB (1993) Variable sorghum growth in acid soils of subhumid West Africa. Arid Land Res Manag 7(4):335–346Google Scholar
  23. Doumbia MD, Hossner LR, Onken AB (1998) Sorghum growth in acid soils of West Africa: variations in soil chemical properties. Arid Land Res Manage 12(2):179–190CrossRefGoogle Scholar
  24. Dugas DV, Monaco MK, Olson A, Klein RR, Kumari S, Ware D, Klein PE (2011) Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genom 12(1):1CrossRefGoogle Scholar
  25. Eswaran H, Reich P, Beinroth F (1997) Global distribution of soils with acidity. In: Moniz AC, Furlani AMC, Schaffert RE, Fageria NK, Rosolem CA, Cantarella H (eds) Plant-soil interactions at low pH. Brazilian Soil Science Society, pp. 159–164Google Scholar
  26. Fiedler K, Bekele WA, Friedt W, Snowdon R, Stützel H, Zacharias A, Uptmoor R (2012) Genetic dissection of the temperature dependent emergence processes in sorghum using a cumulative emergence model and stability parameters. Theor Appl Genet 125(8):1647–1661PubMedCrossRefGoogle Scholar
  27. Franks TK, Powell KS, Choimes S, Marsh E, Iocco P, Sinclair BJ, Ford CM, Van Heeswijck R (2006) Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Transgen Res 15(2):181–195CrossRefGoogle Scholar
  28. Gelli M, Duo Y, Konda AR, Zhang C, Holding D, Dweikat I (2014) Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genom 15(1):1CrossRefGoogle Scholar
  29. Gelli M, Mitchell SE, Liu K, Clemente TE, Weeks DP, Zhang C, Holding DR, Dweikat IM (2016) Mapping QTLs and association of differentially expressed gene transcripts for multiple agronomic traits under different nitrogen levels in sorghum. BMC Plant Biol 16(1):1CrossRefGoogle Scholar
  30. Gunaratna N (2002) Early season cold tolerance in sorghum. MS Thesis, Purdue University, West Lafayette, IN, USAGoogle Scholar
  31. Habyarimana E, Lorenzoni C, Busconi M (2010) Search for new stay-green sources in Sorghum bicolor (L.) Moench. Maydica 55(3):187Google Scholar
  32. Hammer GL, Dong Z, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Sci 49(1):299–312CrossRefGoogle Scholar
  33. Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58(2):327–338PubMedCrossRefGoogle Scholar
  34. Haussmann B, Mahalakshmi V, Reddy B, Seetharama N, Hash C, Geiger H (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106(1):133–142PubMedCrossRefGoogle Scholar
  35. Jordan DR, Hunt CH, Cruickshank AW, Borrell AK, Henzell RG (2012) The relationship between the stay-green trait and grain yield in elite sorghum hybrids grown in a range of environments. Crop Sci 52(3):1153–1161CrossRefGoogle Scholar
  36. Jordan DR, Mace ES, Cruickshank AW, Hunt CH, Henzell RG (2011) Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci 51(4):1444–1457CrossRefGoogle Scholar
  37. Kassahun B, Bidinger FR, Hash CT, Kuruvinashetti MS (2010) Stay-green expression in early generation sorghum [Sorghum bicolor (L.) Moench] QTL introgression lines. Euphytica 172(3):351–362CrossRefGoogle Scholar
  38. Kato Y, Kamoshita A, Yamagishi J, Abe J (2006) Growth of three rice (Oryza sativa L.) cultivars under upland conditions with different levels of water supply. Plant Prod Sci 9(4):422–434Google Scholar
  39. Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103(2–3):266–276CrossRefGoogle Scholar
  40. Kholová J, Murugesan T, Kaliamoorthy S, Malayee S, Baddam R, Hammer GL, McLean G, Deshpande S, Hash CT, Craufurd PQ, Vadez V (2014) Modelling the effect of plant water use traits on yield and stay-green expression in sorghum. Funct Plant Biol 41(11):1019–1034CrossRefGoogle Scholar
  41. Kim JS (2003) Genomic analysis of sorghum by fluorescence in situ hybridisation. Texas A&M University, College Station, TX, USAGoogle Scholar
  42. Kiranmayee KNS, Hash CT, Deshpande SP, Varaprasad KVGK, Kishor PB (2015) Biotechnological approaches to evolve sorghum (Sorghum bicolor (L.) Moench) for drought stress tolerance and shoot fly resistance. Curr Trends Biotechnol Pharm 9(3):281–292Google Scholar
  43. Knoll J, Ejeta G (2008) Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Theor Appl Genet 116(4):541–553PubMedCrossRefGoogle Scholar
  44. Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early-season cold tolerance in sorghum. Theor Appl Genet 116(4):577–587PubMedCrossRefGoogle Scholar
  45. Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493PubMedCrossRefGoogle Scholar
  46. Mace ES, Jordan DR (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 121(7):1339–1356PubMedCrossRefGoogle Scholar
  47. Mace ES, Jordan DR (2011a) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123(1):169–191PubMedCrossRefGoogle Scholar
  48. Mace ES, Jordan DR (2011b) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123(1):169–191PubMedCrossRefGoogle Scholar
  49. Mace ES, Singh V, Van Oosterom EJ, Hammer GL, Hunt CH, Jordan DR (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124(1):97–109PubMedCrossRefGoogle Scholar
  50. MacIntyre BD, Herren HR, Wakhungu J, Watson RT (2009) Agriculture at a crossroads: international assessment of agricultural science and technology for development (IAASTD) global report. IAASTD, Washington DC, USAGoogle Scholar
  51. Magalhaes JV, Garvin DF, Wang Y, Sorrells ME, Klein PE, Schaffert RE, Li L, Kochian LV (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167(4):1905–1914PubMedPubMedCentralCrossRefGoogle Scholar
  52. Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39(9):1156–1161PubMedCrossRefGoogle Scholar
  53. Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav S, Sharmila P, Venkateswarlu B et al (2010) Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biol Plant 54:647–652CrossRefGoogle Scholar
  54. Maranville JW, Clark RB, Ross WM (1980) Nitrogen efficiency in grain sorghum. J Plant Nutr 2(5):577–589CrossRefGoogle Scholar
  55. Marschner H (1991) Mechanisms of adaptation of plants to acid soils. In: Wright RJ, Baligar VC, Murrmann RP (eds) Plant-soil interactions at low pH. Springer, Netherlands, pp 683–702CrossRefGoogle Scholar
  56. McBee GG, Waskom RM, Creelman RA (1983) Effect of senescene on carbohydrates in sorghum during late kernel maturity states. Crop Sci 23(2):372–376CrossRefGoogle Scholar
  57. Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251PubMedCrossRefGoogle Scholar
  58. Mutava RN, Prasad PVV, Tuinstra MR, Kofoid KD, Yu J (2011a) Characterization of sorghum genotypes for traits related to drought tolerance. Field Crops Res 123(1):10–18. doi: 10.1016/j.fcr.2011.04.006 CrossRefGoogle Scholar
  59. Mutava RN, Prasad PVV, Tuinstra MR, Kofoid KD, Yu J (2011b) Characterization of sorghum genotypes for traits related to drought tolerance. Field Crops Research 123(1):10–18CrossRefGoogle Scholar
  60. Pasini L, Bergonti M, Fracasso A, Marocco A, Amaducci S (2014) Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of sorghum under dry-down conditions. J Plant Physiol 171(7):537–548PubMedCrossRefGoogle Scholar
  61. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556PubMedCrossRefGoogle Scholar
  62. Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci USA 92(13):6127–6131Google Scholar
  63. Qi X, Xie S, Liu Y, Yi F, Yu J (2013) Genome- wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Mol Biol 83:459–473PubMedCrossRefGoogle Scholar
  64. Rakshit S, Hariprasanna K, Gomashe S, Ganapathy KN, Das IK, Ramana OV, Dhandapani A, Patil JV (2014) Changes in area, yield gains, and yield stability of sorghum in major sorghum-producing countries, 1970 to 2009. Crop Sci 54(4):1571–1584CrossRefGoogle Scholar
  65. Rakshit S, Swapna M, Dalal M, Sushma G, Ganapathy KN, Dhandapani A, Karthikeyan M, Talwar HS (2016) Post-flowering drought stress response of post-rainy sorghum genotypes. Indian J Plant Physiol 21(1):8–14CrossRefGoogle Scholar
  66. Ram G, Sharma AD (2013) In silico analysis of putative miRNAs and their target genes in sorghum (Sorghum bicolor). Int J Bioinformat Res Applicat 9(4):349–364CrossRefGoogle Scholar
  67. Ramu P, Deshpande SP, Senthilvel S, Jayashree B, Billot C, Deu M, Reddy LA, Hash CT (2010) In silico mapping of important genes and markers available in the public domain for efficient sorghum breeding. Mol Breed 26(3):409–418CrossRefGoogle Scholar
  68. Rao IM, Zeigler RS, Vera R, Sarkarung S (1993) Selection and breeding for acid-soil tolerance in crops. Bioscience 43(7):454–465CrossRefGoogle Scholar
  69. Rao PS, Prakasham RS, Rao PP, Chopra S, Jose S (2015) Sorghum as a sustainable feedstock for biofuels. In: Shibu J, Thallada B (eds.) Biomass and biofuels: advanced biorefineries for sustainable production and distribution. CRC Press 2015, Pages 27–48, Print ISBN: 978–1-4665-9531-6, eBook ISBN: 978-1-4665-9532-3Google Scholar
  70. Rosenow DT, Clark LE (1982) Drought tolerance in sorghum [through breeding]. In: Proceedings of the 37th annual corn and sorghum industry research conference-American Seed Trade Association, Corn and Sorghum Division, Corn and Sorghum Research Conference, Chicago, IL, USA, pp 18–30Google Scholar
  71. Rosenow DT, Quisenberry JE, Wendt CW, Clark LE (1983) Drought tolerant sorghum and cotton germplasm. Agric Water Manag 7(1):207–222CrossRefGoogle Scholar
  72. Rosenow DT, Clark LE (1995) December. Drought and lodging resistance for a quality sorghum crop. In: Proceedings of the 5th annual corn and sorghum industry research conference (Chicago, IL, 6–7 December 1995), American Seed Trade Association, Chicago, IL, USA, pp 82–97Google Scholar
  73. Sabadin PK, Malosetti M, Boer MP, Tardin FD, Santos FG, Guimaraes CT, Gomide RL, Andrade CLT, Albuquerque PEP, Caniato FF, Mollinari M (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor Appl Genet 124(8):1389–1402PubMedCrossRefGoogle Scholar
  74. Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48(5–6):713–726PubMedCrossRefGoogle Scholar
  75. Shen C, Bai Y, Wang S, Zhang S, Wu Y, Chen M, Jiang D, Qi Y (2010) Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J 277(14):2954–2969PubMedCrossRefGoogle Scholar
  76. Shiringani AL, Frisch M, Friedt W (2010) Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet 121(2):323–336PubMedCrossRefGoogle Scholar
  77. Singh V, van Oosterom EJ, Jordan DR, Messina CD, Cooper M, Hammer GL (2010) Morphological and architectural development of root systems in sorghum and maize. Plant Soil 333(1–2):287–299CrossRefGoogle Scholar
  78. Singh V, van Oosterom EJ, Jordan DR, Hunt CH, Hammer GL (2011) Genetic variability and control of nodal root angle in sorghum. Crop Sci 51(5)Google Scholar
  79. Singh V, van Oosterom EJ, Jordan R, Hammer GL (2012) Genetic control of root angle in sorghum and its implication in water extraction. Eur J Agron 42: 3–10Google Scholar
  80. Sivaguru M, Liu J, Kochian LV (2013) Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance. Plant J 76(2):297–307PubMedGoogle Scholar
  81. Srinivas G, Satish K, Madhusudhana R, Seetharama N (2009) Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench. Theor Appl Genet 118(4):703–717PubMedCrossRefGoogle Scholar
  82. Srinivas G, Satish K, Mohan SM, Reddy RN, Madhusudhana R, Balakrishna D, Bhat BV, Howarth CJ, Seetharama N (2008) Development of genic-microsatellite markers for sorghum staygreen QTL using a comparative genomic approach with rice. Theor Appl Genet 117(2):283–296PubMedCrossRefGoogle Scholar
  83. Su M, Li X-F, Ma X-Y, Peng X-J, Zhao A-G, Cheng L-Q et al (2011) Cloning twoP5CS genes from bioenergy sorghum and their expression profi les under abiotic stresses and MeJA treatment. Plant Sci 181:652–659PubMedCrossRefGoogle Scholar
  84. Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101(5–6):733–741CrossRefGoogle Scholar
  85. Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100(8):1225–1232CrossRefGoogle Scholar
  86. Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3(6):439–448Google Scholar
  87. Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49(5):1769–1780CrossRefGoogle Scholar
  88. Upadhyaya HD, Wang YH, Sastry DV, Dwivedi SL, Prasad PV, Burrell AM, Klein RR, Morris GP, Klein PE (2016) Association mapping of germinability and seedling vigor in sorghum under controlled low-temperature conditions. Genome 59(2):137–145PubMedCrossRefGoogle Scholar
  89. Vadez V, Deshpande S, Kholova J, Ramu P, Hash CT (2013) Molecular breeding for stay-green: progress and challenges in sorghum. In: Translational genomics for crop breeding: abiotic stress, yield and quality. Wiley Inc., pp. 125–141. ISBN 9781118728482Google Scholar
  90. Vadez V, Deshpande SP, Kholova J, Hammer GL, Borrell AK, Talwar HS, Hash CT (2011) Stay-green quantitative trait loci’s effects on water extraction, transpiration efficiency and seed yield depend on recipient parent background. Funct Plant Biol 38(7):553–566CrossRefGoogle Scholar
  91. Vadez V, Kholová J, Hummel G, Zhokhavets U, Gupta SK, Hash CT (2015) LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. J Exp Bot 251Google Scholar
  92. Van Oosterom EJ, Jayachandran R, Bidinger FR (1996) Diallel analysis of the stay-green trait and its components in sorghum. Crop Sci 36(3):549–555CrossRefGoogle Scholar
  93. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12(6):e1001883PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wang H, Chen G, Zhang H, Liu B, Yang Y, Qin L, Chen E, Guan Y (2014a) Identification of QTLs for salt tolerance at germination and seedling stage of Sorghum bicolor L. Moench. Euphytica 196(1):117–127CrossRefGoogle Scholar
  95. Wang TT, Ren ZJ, Liu ZQ, Feng X, Guo RQ, Li BG et al (2014b) SbHKT1; 4, a member of the high- affi nity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na + stress. J Integr Plant Biol 56:315–332PubMedCrossRefGoogle Scholar
  96. Wang S, Bai Y, Shen C, Wu Y, Zhang S, Jiang D, Guilfoyle TJ, Chen M, Qi Y (2010) Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integr Genom 10(4):533–546CrossRefGoogle Scholar
  97. Washburn JD, Murray SC, Burson BL, Klein RR, Jessup RW (2013) Targeted mapping of quantitative trait locus regions for rhizomatousness in chromosome SBI-01 and analysis of overwintering in a Sorghum bicolor × S. propinquum population. Mol Breed 31(1):153–162Google Scholar
  98. Wood AJ, Saneoka H, Rhodes D, Joly RJ, Goldsbrough PB (1996) Betaine aldehyde dehydrogenase in sorghum (molecular cloning and expression of two related genes). Plant Physiol 110:1301–1308PubMedPubMedCentralCrossRefGoogle Scholar
  99. Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43(3):461–469PubMedCrossRefGoogle Scholar
  100. Yan H, Hong L, Zhou Y, Jiang H, Zhu S, Fan J et al (2013) A genome- wide analysis of the ERF gene family in sorghum. Genet Mol Res 12:2038–2055PubMedCrossRefGoogle Scholar
  101. Yang R, Yang T, Zhang H, Qi Y, Xing Y, Zhang N, Li R, Weeda S, Ren S, Ouyang B, Guo YD (2014a) Hormone profiling and transcription analysis reveal a major role of ABA in tomato salt tolerance. Plant Physiol Biochem 77:23–34PubMedCrossRefGoogle Scholar
  102. Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G (2014b) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5Google Scholar
  103. Youngquist JB, Bramel-Cox P, Maranville JW (1992) Evaluation of alternative screening criteria for selecting nitrogen-use efficient genotypes in sorghum. Crop Sci 32(6):1310–1313CrossRefGoogle Scholar
  104. Yu J, Tuinstra MR (2001) Genetic analysis of seedling growth under cold temperature stress in grain sorghum. Crop Sci 41(5):1438–1443CrossRefGoogle Scholar
  105. Yu JM, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354(2):585–590PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Santosh Deshpande
    • 1
    Email author
  • Sujay Rakshit
    • 2
  • K. G. Manasa
    • 1
  • Sarita Pandey
    • 1
  • Rajeev Gupta
    • 1
  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia
  2. 2.ICAR-Indian Institute of Millets ResearchHyderabadIndia

Personalised recommendations