Advertisement

Sorghum Genome Mapping and Its Impact Generated Through Public and Private Efforts

  • Sylvester Elikana Anami
  • Hong Luo
  • Yan Xia
  • Hai-Chun JingEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

In 2009, the sequence and annotation of a sorghum whole genome was reported by a team of international collaborators, followed by resequencing and complete annotation of the sorghum transcriptome and methylome together with the identification of genomewide structural variations through national initiatives. The genome, structural variations, quantitative trait loci (QTLs), genes, and alternative splicing (AS) events encode useful agronomic information that needs to be decoded for sorghum improvement through genetic manipulations of key metabolic pathways. Here, we review the background history of the national and international sorghum genome initiatives, public and private partners involved, sorghum genome databases for robust computational methods for sequence analysis, and the impact of the genome information on sorghum improvement.

Keywords

Genome sequencing Genetic map Physical map NGS Splicing RNA seq 

References

  1. Agrama A, Widle E, Reese C, Campbell R, Tuinstra R (2002) Genetic mapping of QTLs associated with greenbug resistance and tolerance in Sorghum bicolor. Theor Appl Genet 104:1373–1378PubMedCrossRefGoogle Scholar
  2. Aitken KS, Mcneil MD, Berkman PJ, Hermann S, Kilian A et al (2014) Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane. BMC Plant Biol 14:190PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anami ES, Zhang L, Xia Y, Zhang Y, Liu Z et al (2015a) Sweet sorghum ideotypes: genetic improvement of stress tolerance. Food Energy Secur 4:3–24CrossRefGoogle Scholar
  4. Anami ES, Zhang L, Xia Y, Zhang Y, Liu Z et al (2015b) Sweet sorghum ideotypes: genetic improvement of the biofuel syndrome. Food Energy Secur 4:159–177CrossRefGoogle Scholar
  5. Angiosperm Phylogeny Group, I (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  6. Barbazuk WB, Fu Y, Mcginnis KM (2008) Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 18:1381–1392PubMedCrossRefGoogle Scholar
  7. Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D et al (2005) Sorghum genome sequencing by methylation filtration. PLoS Biol 3:e13PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bekele WA, Wieckhorst S, Friedt W, Snowdon RJ (2013) High-throughput genomics in sorghum: from whole genome resequencing to a SNP screening array. Plant Biotechnol J 11:1112–1125PubMedCrossRefGoogle Scholar
  9. Berhan AM, Hulbert S, Butler L, Bennetzen J (1993) Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor Appl Genet 86:598–604PubMedCrossRefGoogle Scholar
  10. Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002PubMedCrossRefGoogle Scholar
  11. Binelli G, Gianfranceschi L, Pe M, Taramino G, Busso C et al (1992) Similarity of maize and sorghum genomes as revealed by maize RFLP probes. Theor Appl Genet 84:10–16PubMedCrossRefGoogle Scholar
  12. Boivin K, Deu M, Rami JF, Trouche G, Hamon PL (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328CrossRefGoogle Scholar
  13. Bowers JE, Abbey C, Anderson S, Chang C, Draye X et al (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386PubMedPubMedCentralGoogle Scholar
  14. Bowers JE, Arias MA, Asher R, Avise JA, Ball RT et al (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA 102:13206–13211PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brunner S, Pea G, Rafalski A (2005) Origins, genetic organization and transcription of a family of non-autonomous helitron elements in maize. Plant J 43:799–810PubMedCrossRefGoogle Scholar
  16. Burr B, Burr FA, Thompson KH, Albertson M, Stuber C (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526PubMedPubMedCentralGoogle Scholar
  17. Bybee SM, Bracken-grissom H, Haynes BD, Hermansen RA, Byers RL et al (2011) Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biol Evol 3:1312–1323PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cai Z, Liu H, He Q, Pu M, Chen J et al (2014) Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. BMC Genom 15:1025CrossRefGoogle Scholar
  19. Chen J, Hu Q, Zhang Y, Lu C, Kuang H (2014) P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acids Res 42:D1176–D1181PubMedCrossRefGoogle Scholar
  20. Chittenden L, Schertz K, Lin Y, Wing R, Paterson A (1994) A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933PubMedCrossRefGoogle Scholar
  21. Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2010) A Helitron-like transposon superfamily from Lepidoptera disrupts (GAAA) n microsatellites and is responsible for flanking sequence similarity within a microsatellite family. J Mol Evol 70:275–288PubMedCrossRefGoogle Scholar
  22. Coe Jr E, Neuffer M, Hoisington D, Sprague G, Dudley J (1988) The genetics of corn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI, USAGoogle Scholar
  23. Cultrone A, Domínguez YR, Drevet C, Scazzocchio C, Fernández-martín R (2007) The tightly regulated promoter of the xanA gene of Aspergillus nidulans is included in a helitron. Mol Microbiol 63:1577–1587PubMedCrossRefGoogle Scholar
  24. Das G, Rao GJN (2015) Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front Plant Sci 6:698PubMedPubMedCentralGoogle Scholar
  25. Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dillon SL, Shapter FM, Henry RJ, Cordeiro G, Izquierdo L et al (2007) Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 100:975–989PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dong Y, Lu X, Song W, Shi L, Zhang M et al (2011) Structural characterization of helitrons and their stepwise capturing of gene fragments in the maize genome. BMC Genom 12:609CrossRefGoogle Scholar
  28. Du C, Fefelova N, Caronna J, He L, Dooner HK (2009) The polychromatic Helitron landscape of the maize genome. Proc Natl Acad Sci USA 106:19916–19921PubMedPubMedCentralCrossRefGoogle Scholar
  29. Du J, Tian Z, Hans CS, Laten HM, Cannon SB et al (2010) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598PubMedCrossRefGoogle Scholar
  30. Dufour P, Deu M, Grivet L, D’Hont A, Paulet F et al (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94:409–418CrossRefGoogle Scholar
  31. Dugas DV, Monaco MK, Olson A, Klein RR, Kumari S et al (2011) Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genom 12:514CrossRefGoogle Scholar
  32. Eid J, Fehr A, Gray J, Luong K, Lyle J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138PubMedCrossRefGoogle Scholar
  33. Ejeta G, Knoll JE (2007) Marker-assisted selection in sorghum. In: Varshney R, Tuberosa R (ed) Genomics-assisted crop improvement, vol 2. Genomics application in crop plants. Springer, pp 187–205Google Scholar
  34. Feltus F, Hart G, Schertz K, Casa A, Kresovich S et al (2006a) Alignment of genetic maps and QTLs between inter-and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305PubMedCrossRefGoogle Scholar
  35. Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S et al (2006b) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305PubMedCrossRefGoogle Scholar
  36. Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341PubMedCrossRefGoogle Scholar
  37. Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453PubMedCrossRefGoogle Scholar
  38. Gao D, Chen J, Chen M, Meyers BC, Jackson S (2012) A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes. PLoS ONE 7:e32010PubMedPubMedCentralCrossRefGoogle Scholar
  39. Grabowski P (2002) Alternative splicing in parallel. Nat Biotechnol 20:346–347PubMedCrossRefGoogle Scholar
  40. Haussmann G, Hess E, Seetharama N, Welz G, Geiger H et al (2002) Construction of a combined sorghum linkage map from two recombinant inbred populations using AFLP, SSR, RFLP, and RAPD markers, and comparison with other sorghum maps. Theor Appl Genet 105:629–637PubMedCrossRefGoogle Scholar
  41. Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet 72:761–769PubMedCrossRefGoogle Scholar
  42. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39:1522–1527PubMedCrossRefGoogle Scholar
  43. Hollister JD, Gaut BS (2007) Population and evolutionary dynamics of Helitron transposable elements in Arabidopsis thaliana. Mol Biol Evol 24:2515–2524PubMedCrossRefGoogle Scholar
  44. Homolka A, Eder T, Kopecky D, Berenyi M, Burg K et al (2012) Allele discovery of ten candidate drought-response genes in Austrian oak using a systematically informatics approach based on 454 amplicon sequencing. BMC Res Notes 5:175PubMedPubMedCentralCrossRefGoogle Scholar
  45. Horn AE, Kugel JF, Goodrich JA (2016) Single molecule microscopy reveals mechanistic insight into RNA polymerase II preinitiation complex assembly and transcriptional activity. Nucleic Acids Res. doi: 10.1093/nar/gkw321 Google Scholar
  46. Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87:4251–4255PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jiang SY, Ramachandran S (2013) Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum. PLoS ONE 8:e71118PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jiang J, Nasuda S, Dong F, Scherrer CW, Woo SS et al (1996) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jiang A, Gan L, Tu Y, Ma H, Zhang J et al (2013a) The effect of genome duplication on seed germination and seedling growth of rice under salt stress. Aust J Crop Sci 12:1814–1821Google Scholar
  50. Jiang SY, Ma A, Ramamoorthy R, Ramachandran S (2013b) Genome-wide survey on genomic variation, expression divergence, and evolution in two contrasting rice genotypes under high salinity stress. Genome Biol Evol 5:2032–2050PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jiao Y, Li J, Tang H, Paterson AH (2014) Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell 26:2792–2802PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98:8714–8719PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kim JS, Islam-faridi M, Klein PE, Stelly DM, Price H et al (2005) Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171:1963–1976PubMedPubMedCentralCrossRefGoogle Scholar
  54. Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early-season cold tolerance in sorghum. Theor Appl Genet 116:577–587PubMedCrossRefGoogle Scholar
  55. Kong L, Dong J, Hart GE (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple sequence repeats (SSRs). Theor Appl Genet 101:438–448CrossRefGoogle Scholar
  56. Kong W, Guo H, Goff VH, Lee TH, Kim C et al (2014) Genetic analysis of vegetative branching in sorghum. Theor Appl Genet 127:2387–2403PubMedCrossRefGoogle Scholar
  57. Kresovich S, Barbazuk B, Bedell JA, Borrell A, Buell CR et al (2005) Toward sequencing the sorghum genome: a US National Science Foundation-sponsored workshop report. Plant Physiol 138:1898CrossRefGoogle Scholar
  58. Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics Article ID 831460Google Scholar
  59. Kumar M, Choi J, Kumari N, Pareek A, Kim S (2015) Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica. Front Plant Sci 6:688PubMedPubMedCentralGoogle Scholar
  60. Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073PubMedPubMedCentralCrossRefGoogle Scholar
  61. Leiser WL, Rattunde HF, Weltzien E, Cisse N, Abdou M et al (2014) Two in one sweep: aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African sorghum. BMC Plant Biol 14:206PubMedPubMedCentralCrossRefGoogle Scholar
  62. Li M, Yuyama N, Luo L, Hirata M, Cai H (2009) In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Mol Breed 24:41–47CrossRefGoogle Scholar
  63. Li Q, Li Y, Song J, Xu H, Xu J et al (2014) High-accuracy de novo assembly and SNP detection of chloroplast genomes using a SMRT circular consensus sequencing strategy. New Phytol 204:1041–1049PubMedCrossRefGoogle Scholar
  64. Li J, Yu D, Zhao Q (2016) Solid-state nanopore-based DNA single molecule detection and sequencing. Microchim Acta 183:941–953CrossRefGoogle Scholar
  65. Lin Y, Schertz K, Paterson A (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae in reference to an interspecific sorghum population. Genetics 141:391–411PubMedPubMedCentralGoogle Scholar
  66. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mace ES, Xia L, Jordan DR, Halloran K, Parh DK et al (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genom 22:9–26Google Scholar
  68. Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR et al (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ et al (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320PubMedPubMedCentralGoogle Scholar
  70. Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M (2015) MOROKOSHI: Transcriptome database in Sorghum bicolor. Plant Cell Physiol 56:e6. doi: 10.1093/pcp/pcu1187
  71. Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L et al (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mascher M, Jost M, Kuon JE, Himmelbach A, Aßfalg A et al (2014) Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15:R78PubMedPubMedCentralCrossRefGoogle Scholar
  73. McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355PubMedPubMedCentralCrossRefGoogle Scholar
  74. McIntyre CL, Casu RE, Drenth J, Knight D, Whan VA et al (2005) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48:391–400PubMedCrossRefGoogle Scholar
  75. Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC et al (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP®, RFLP and SSR markers. Plant Mol Biol 48:483–499PubMedCrossRefGoogle Scholar
  76. Messing J (2009) Synergy of two reference genomes for the grass family. Plant Physiol 149:117–124PubMedPubMedCentralCrossRefGoogle Scholar
  77. Miller J, Jackson S, Nasuda S, Gill B, Wing R et al (1998) Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theor Appl Genet 96:832–839CrossRefGoogle Scholar
  78. Mohamed A, Ali R, Elhassan O, Suliman E, Mugoya C et al (2014) First products of DNA marker-assisted selection in sorghum released for cultivation by farmers in sub-saharan Africa. J Plant Sci Mol Breed 3:3CrossRefGoogle Scholar
  79. Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A et al (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002PubMedCrossRefGoogle Scholar
  80. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458PubMedCrossRefGoogle Scholar
  81. Murray SC, Rooney WL, Hamblin MT, Mitchell SE (2008a) Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome 2:48–62CrossRefGoogle Scholar
  82. Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE et al (2008b) Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193CrossRefGoogle Scholar
  83. Muthukumar B, Bennetzen J (2004) Isolation and characterization of genomic and transcribed retrotransposon sequences from sorghum. Mol Genet Genomics 271:308–316PubMedCrossRefGoogle Scholar
  84. Nelson JC, Wang S, Wu Y, Li X, Antony G et al (2011) Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum. BMC Genom 12:352CrossRefGoogle Scholar
  85. Neves LG, Davis JM, Barbazuk WB, Kirst M (2013) Whole-exome targeted sequencing of the uncharacterized pine genome. Plant J 75:146–156PubMedCrossRefGoogle Scholar
  86. Nussbaumer T, Martis MM, Roessner SK, Pfeifer M, Bader KC et al (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res 41:D1144–D1151PubMedCrossRefGoogle Scholar
  87. Ohyanagi H, Takano T, Terashima S, Kobayashi M, Kanno M et al (2015) Plant Omics data center: an integrated web repository for interspecies gene expression networks with NLP-based curation. Plant Cell Physiol 56:e9PubMedCrossRefGoogle Scholar
  88. Olson A, Klein RR, Dugas DV, Lu Z, Regulski M et al (2013) Expanding and vetting sorghum bicolor gene annotations through transcriptome and methylome sequencing. Plant Genome. doi: 10.3835/plantgenome2013.08.0025
  89. Panahi B, Abbaszadeh B, Taghizadeghan M, Ebrahimie E (2014) Genome-wide survey of alternative splicing in Sorghum Bicolor. Physiol Mol Biol Plants 20:323–329PubMedPubMedCentralCrossRefGoogle Scholar
  90. Pasini L, Bergonti M, Fracasso A, Marocco A, Amaducci S (2014) Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of sorghum under dry-down conditions. J Plant Physiol 171:537–548PubMedCrossRefGoogle Scholar
  91. Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908PubMedPubMedCentralCrossRefGoogle Scholar
  92. Paterson AH, Bowers JE, Van de Peer Y, Vandepoele K (2005a) Ancient duplication of cereal genomes. New Phytol 165:658–661PubMedCrossRefGoogle Scholar
  93. Paterson AH, Freeling M, Sasaki T (2005b) Grains of knowledge: genomics of model cereals. Genome Res 15:1643–1650PubMedCrossRefGoogle Scholar
  94. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  95. Peng Y, Schertz KF, Cartinhour S, Hart GE (1999) Comparative genome mapping of Sorghum bicolor (L.) Moench using an RFLP map constructed in a population of recombinant inbred lines. Plant Breed 118:225–235CrossRefGoogle Scholar
  96. Pereira MG, Lee M, Bramel-Cox P, Woodman W, Doebley J et al (1994) Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37:236–243PubMedCrossRefGoogle Scholar
  97. Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE et al (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12:795–807PubMedPubMedCentralCrossRefGoogle Scholar
  98. Pratt LH, Liang C, Shah M, Sun F, Wang H et al (2005) Sorghum expressed sequence tags identify signature genes for drought, pathogenesis, and skotomorphogenesis from a milestone set of 16,801 unique transcripts. Plant Physiol 139:869–884PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ragab RA, Dronavalli S, Maroof MAS, Yu YGL (1994) Construction of a sorghum RFLP linkage map using sorghum and maize DNA probes. Genome 37:590–594PubMedCrossRefGoogle Scholar
  100. Ramalashmi K, Prathima PT, Mohanraj K, Nair NV (2014) Expression profiling of sucrose metabolizing genes in saccharum, sorghum and their hybrids. Appl Biochem Biotechnol 174:1510–1519PubMedCrossRefGoogle Scholar
  101. Ramu P, Kassahun B, Senthilvel S, Ashok Kumar C, Jayashree B et al (2009) Exploiting rice-sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Theor Appl Genet 119:1193–1204PubMedCrossRefGoogle Scholar
  102. Reddy RN, Madhusudhana R, Mohan SM, Chakravarthi DVN, Seetharama N (2012) Characterization, development and mapping of unigene-derived microsatellite markers in sorghum [Sorghum bicolor (L.) Moench]. Mol Breed 29:543–564Google Scholar
  103. Rhodes DH, Hoffmann L Jr, Rooney WL, Ramu P, Morris GP et al (2014) Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. J Agric Food Chem 62:10916–10927PubMedCrossRefGoogle Scholar
  104. Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES et al (2008) Identification of QTL for sugar-related traits in a sweet x grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384CrossRefGoogle Scholar
  105. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12:R22PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sabadin PK, Malosetti M, Boer MP, Tardin FD, Santos FG et al (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor Appl Genet 124:1389–1402PubMedCrossRefGoogle Scholar
  107. Salse J, Abrouk M, Murat F, Quraishi UM, Feuillet C (2009) Improved criteria and comparative genomics tool provide new insights into grass paleogenomics. Brief Bioinform 10:619–630PubMedCrossRefGoogle Scholar
  108. Sampath P, Murukarthick J, Izzah NK, Lee J, Choi HI et al (2014) Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea. PLoS ONE 9:e94499PubMedPubMedCentralCrossRefGoogle Scholar
  109. Saxena RK, Edwards D, Varshney RK (2014) Structural variations in plant genomes. Brief Funct Genomics 3:296–307CrossRefGoogle Scholar
  110. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115PubMedCrossRefGoogle Scholar
  111. Seoighe C, Gehring C (2004) Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet 20:461–464PubMedCrossRefGoogle Scholar
  112. Shakoor N, Nair R, Crasta O, Morris G, Feltus A, Kresovich S (2014) A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums. BMC Plant Biol 14:35PubMedPubMedCentralCrossRefGoogle Scholar
  113. Shen X, Liu Z, Mocoeur A, Xia Y, Jing H (2015) PAV markers in Sorghum bicolour: genome pattern, affected genes and pathways, and genetic linkage map construction. Theor Appl Genet 128:623–637PubMedPubMedCentralCrossRefGoogle Scholar
  114. Shikata H, Hanada K, Ushijima T, Nakashima M, Suzuki Y et al (2014) Phytochrome controls alternative splicing to mediate light responses in Arabidopsis. Proc Natl Acad Sci USA 111:18781–18786PubMedPubMedCentralCrossRefGoogle Scholar
  115. Shiringani AL, Friedt W (2011) QTL for fibre-related traits in grain x sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Theor Appl Genet 123:999–1011PubMedCrossRefGoogle Scholar
  116. Siewert C, Hess WR, Duduk B, Huettel B, Reinhardt R et al (2014) Complete genome determination and analysis of Acholeplasma oculi strain 19L, highlighting the loss of basic genetic features in the Acholeplasmataceae. BMC Genom 15:931CrossRefGoogle Scholar
  117. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH et al (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348PubMedCrossRefGoogle Scholar
  118. Springer PS, Zimmer EA, Bennetzen JL (1989) Genomic organization of the ribosomal DNA of sorghum and its close relatives. Theor Appl Genet 77:844–850PubMedCrossRefGoogle Scholar
  119. Srinivas G, Satish K, Murali Mohan S, Nagaraja Reddy R, Madhusudhana R et al (2008) Development of genic-microsatellite markers for sorghum staygreen QTL using a comparative genomic approach with rice. Theor Appl Genet 117:283–296PubMedCrossRefGoogle Scholar
  120. Srinivas G, Satish K, Madhusudhana R, Reddy RN, Mohan SM, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454Google Scholar
  121. Staiger D, Brown JW (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25:3640–3656PubMedPubMedCentralCrossRefGoogle Scholar
  122. Subudhi PK, Nguyen HT (2000) Linkage group alignment of sorghum RFLP maps using a RIL mapping population. Genome 43:240–249PubMedCrossRefGoogle Scholar
  123. Sun J, Zhou M, Mao Z, Li C (2012) Characterization and evolution of microRNA genes derived from repetitive elements and duplication events in plants. PLoS ONE 7:e34092PubMedPubMedCentralCrossRefGoogle Scholar
  124. Syed NH, Kalyna M, Marquez Y, Barta A, Brown JW (2012) Alternative splicing in plants-coming of age. Trends Plant Sci 17:616–623PubMedPubMedCentralCrossRefGoogle Scholar
  125. Tang H, Bowers JE, Wang X, Paterson AH (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci USA 107:472–477PubMedCrossRefGoogle Scholar
  126. Tao YZ, Jordan DR, Henzell RG, McIntyre CL (1998) Construction of a genetic map in a sorghum recombinant inbred line using probes from different sources and its comparison with other sorghum maps. Aust J Agric Res 49:729–736CrossRefGoogle Scholar
  127. Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232CrossRefGoogle Scholar
  128. Taramino G, Tarchini R, Ferrario S, Lee M, Pe ME (1997) Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet 95:66–72CrossRefGoogle Scholar
  129. Tian Z, Rizzon C, Du J, Zhu L, Bennetzen JL et al (2009) Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons? Genome Res 19:2221–2230PubMedPubMedCentralCrossRefGoogle Scholar
  130. Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1996) Identification of quantitative trait loci associated with preflowering drought tolerance in sorghum. Crop Sci 36:1337–1344CrossRefGoogle Scholar
  131. Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169–179PubMedCrossRefGoogle Scholar
  132. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55PubMedCrossRefGoogle Scholar
  133. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103:17644–17649PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wang C, Shi X, Liu L, Li H, Ammiraju JS et al (2013) Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives. Genetics 195:723–737PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wendorf F, Close AE, Schild R, Wasylikowa K, Housley RA et al (1992) Saharan exploitation of plants 8,000 years BP. Nature 359:721–724CrossRefGoogle Scholar
  137. Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821PubMedCrossRefGoogle Scholar
  138. Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130PubMedPubMedCentralGoogle Scholar
  139. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982PubMedCrossRefGoogle Scholar
  140. Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22:4922–4931PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wu YQ, Huang Y (2007) An SSR genetic map of Sorghum bicolor (L.) Moench and its comparison to a published genetic map. Genome 50:84–89PubMedCrossRefGoogle Scholar
  142. Wu Z, Gui S, Quan Z, Pan L, Wang S (2014) A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicots. BMC Plant Biol 14:289PubMedPubMedCentralCrossRefGoogle Scholar
  143. Xu JH, Messing J (2006) Maize haplotype with a helitron-amplified cytidine deaminase gene copy. BMC Genet 7:52PubMedPubMedCentralCrossRefGoogle Scholar
  144. Xu GW, Magill CW, Schertz KF, Hart GE (1994) A RFLP linkage map of Sorghum bicolor (L.) Moench. Theor Appl Genet 89:139–145PubMedGoogle Scholar
  145. Yan H, Jiang C, Li X, Sheng L, Dong Q et al (2014) PIGD: a database for intronless genes in the Poaceae. BMC Genom 15:832CrossRefGoogle Scholar
  146. Yang L, Bennetzen JL (2009) Structure-based discovery and description of plant and animal Helitrons. Proc Natl Acad Sci USA 106:12832–12837PubMedPubMedCentralCrossRefGoogle Scholar
  147. Yonemaru J, Ando T, Mizubayashi T, Kasuga S, Matsumoto T et al (2009) Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.) Moench). DNA Res 16:187–193PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zhang LM, Luo H, Liu ZQ, Zhao Y, Luo JC (2014a) Genome-wide patterns of large-size presence/absence variants in sorghum. J Integr Plant Biol 56:24–37PubMedCrossRefGoogle Scholar
  149. Zhang W, Ciclitira P, Messing J (2014b) PacBio sequencing of gene families-A case study with wheat gluten genes. Gene 533:541–546PubMedCrossRefGoogle Scholar
  150. Zheng LY, Guo XS, He B, Sun LJ, Peng Y (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zou G, Zhai G, Feng Q, Yan S, Wang A et al (2012) Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot 63:5451–5462PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Sylvester Elikana Anami
    • 1
    • 2
  • Hong Luo
    • 1
  • Yan Xia
    • 1
  • Hai-Chun Jing
    • 1
    Email author
  1. 1.Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
  2. 2.Institute of Biotechnology ResearchJomo Kenyatta University of Agriculture and TechnologyNairobiKenya

Personalised recommendations