Skip to main content

Sorghum Genome Mapping and Its Impact Generated Through Public and Private Efforts

  • Chapter
  • First Online:
The Sorghum Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1179 Accesses

Abstract

In 2009, the sequence and annotation of a sorghum whole genome was reported by a team of international collaborators, followed by resequencing and complete annotation of the sorghum transcriptome and methylome together with the identification of genomewide structural variations through national initiatives. The genome, structural variations, quantitative trait loci (QTLs), genes, and alternative splicing (AS) events encode useful agronomic information that needs to be decoded for sorghum improvement through genetic manipulations of key metabolic pathways. Here, we review the background history of the national and international sorghum genome initiatives, public and private partners involved, sorghum genome databases for robust computational methods for sequence analysis, and the impact of the genome information on sorghum improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrama A, Widle E, Reese C, Campbell R, Tuinstra R (2002) Genetic mapping of QTLs associated with greenbug resistance and tolerance in Sorghum bicolor. Theor Appl Genet 104:1373–1378

    Article  CAS  PubMed  Google Scholar 

  • Aitken KS, Mcneil MD, Berkman PJ, Hermann S, Kilian A et al (2014) Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane. BMC Plant Biol 14:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Anami ES, Zhang L, Xia Y, Zhang Y, Liu Z et al (2015a) Sweet sorghum ideotypes: genetic improvement of stress tolerance. Food Energy Secur 4:3–24

    Article  Google Scholar 

  • Anami ES, Zhang L, Xia Y, Zhang Y, Liu Z et al (2015b) Sweet sorghum ideotypes: genetic improvement of the biofuel syndrome. Food Energy Secur 4:159–177

    Article  Google Scholar 

  • Angiosperm Phylogeny Group, I (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Barbazuk WB, Fu Y, Mcginnis KM (2008) Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 18:1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D et al (2005) Sorghum genome sequencing by methylation filtration. PLoS Biol 3:e13

    Article  PubMed  PubMed Central  Google Scholar 

  • Bekele WA, Wieckhorst S, Friedt W, Snowdon RJ (2013) High-throughput genomics in sorghum: from whole genome resequencing to a SNP screening array. Plant Biotechnol J 11:1112–1125

    Article  CAS  PubMed  Google Scholar 

  • Berhan AM, Hulbert S, Butler L, Bennetzen J (1993) Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor Appl Genet 86:598–604

    Article  CAS  PubMed  Google Scholar 

  • Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    Article  CAS  PubMed  Google Scholar 

  • Binelli G, Gianfranceschi L, Pe M, Taramino G, Busso C et al (1992) Similarity of maize and sorghum genomes as revealed by maize RFLP probes. Theor Appl Genet 84:10–16

    Article  CAS  PubMed  Google Scholar 

  • Boivin K, Deu M, Rami JF, Trouche G, Hamon PL (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328

    Article  CAS  Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X et al (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers JE, Arias MA, Asher R, Avise JA, Ball RT et al (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA 102:13206–13211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner S, Pea G, Rafalski A (2005) Origins, genetic organization and transcription of a family of non-autonomous helitron elements in maize. Plant J 43:799–810

    Article  CAS  PubMed  Google Scholar 

  • Burr B, Burr FA, Thompson KH, Albertson M, Stuber C (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bybee SM, Bracken-grissom H, Haynes BD, Hermansen RA, Byers RL et al (2011) Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biol Evol 3:1312–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Liu H, He Q, Pu M, Chen J et al (2014) Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. BMC Genom 15:1025

    Article  CAS  Google Scholar 

  • Chen J, Hu Q, Zhang Y, Lu C, Kuang H (2014) P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acids Res 42:D1176–D1181

    Article  CAS  PubMed  Google Scholar 

  • Chittenden L, Schertz K, Lin Y, Wing R, Paterson A (1994) A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933

    Article  CAS  PubMed  Google Scholar 

  • Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2010) A Helitron-like transposon superfamily from Lepidoptera disrupts (GAAA) n microsatellites and is responsible for flanking sequence similarity within a microsatellite family. J Mol Evol 70:275–288

    Article  CAS  PubMed  Google Scholar 

  • Coe Jr E, Neuffer M, Hoisington D, Sprague G, Dudley J (1988) The genetics of corn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI, USA

    Google Scholar 

  • Cultrone A, Domínguez YR, Drevet C, Scazzocchio C, Fernández-martín R (2007) The tightly regulated promoter of the xanA gene of Aspergillus nidulans is included in a helitron. Mol Microbiol 63:1577–1587

    Article  CAS  PubMed  Google Scholar 

  • Das G, Rao GJN (2015) Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front Plant Sci 6:698

    PubMed  PubMed Central  Google Scholar 

  • Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon SL, Shapter FM, Henry RJ, Cordeiro G, Izquierdo L et al (2007) Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 100:975–989

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Lu X, Song W, Shi L, Zhang M et al (2011) Structural characterization of helitrons and their stepwise capturing of gene fragments in the maize genome. BMC Genom 12:609

    Article  CAS  Google Scholar 

  • Du C, Fefelova N, Caronna J, He L, Dooner HK (2009) The polychromatic Helitron landscape of the maize genome. Proc Natl Acad Sci USA 106:19916–19921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Tian Z, Hans CS, Laten HM, Cannon SB et al (2010) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598

    Article  CAS  PubMed  Google Scholar 

  • Dufour P, Deu M, Grivet L, D’Hont A, Paulet F et al (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94:409–418

    Article  CAS  Google Scholar 

  • Dugas DV, Monaco MK, Olson A, Klein RR, Kumari S et al (2011) Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genom 12:514

    Article  CAS  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  • Ejeta G, Knoll JE (2007) Marker-assisted selection in sorghum. In: Varshney R, Tuberosa R (ed) Genomics-assisted crop improvement, vol 2. Genomics application in crop plants. Springer, pp 187–205

    Google Scholar 

  • Feltus F, Hart G, Schertz K, Casa A, Kresovich S et al (2006a) Alignment of genetic maps and QTLs between inter-and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S et al (2006b) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Chen J, Chen M, Meyers BC, Jackson S (2012) A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes. PLoS ONE 7:e32010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabowski P (2002) Alternative splicing in parallel. Nat Biotechnol 20:346–347

    Article  CAS  PubMed  Google Scholar 

  • Haussmann G, Hess E, Seetharama N, Welz G, Geiger H et al (2002) Construction of a combined sorghum linkage map from two recombinant inbred populations using AFLP, SSR, RFLP, and RAPD markers, and comparison with other sorghum maps. Theor Appl Genet 105:629–637

    Article  CAS  PubMed  Google Scholar 

  • Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet 72:761–769

    Article  CAS  PubMed  Google Scholar 

  • Hodges E, Xuan Z, Balija V, Kramer M, Molla MN et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39:1522–1527

    Article  CAS  PubMed  Google Scholar 

  • Hollister JD, Gaut BS (2007) Population and evolutionary dynamics of Helitron transposable elements in Arabidopsis thaliana. Mol Biol Evol 24:2515–2524

    Article  CAS  PubMed  Google Scholar 

  • Homolka A, Eder T, Kopecky D, Berenyi M, Burg K et al (2012) Allele discovery of ten candidate drought-response genes in Austrian oak using a systematically informatics approach based on 454 amplicon sequencing. BMC Res Notes 5:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Horn AE, Kugel JF, Goodrich JA (2016) Single molecule microscopy reveals mechanistic insight into RNA polymerase II preinitiation complex assembly and transcriptional activity. Nucleic Acids Res. doi:10.1093/nar/gkw321

    Google Scholar 

  • Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87:4251–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang SY, Ramachandran S (2013) Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum. PLoS ONE 8:e71118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Nasuda S, Dong F, Scherrer CW, Woo SS et al (1996) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA 93:14210–14213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang A, Gan L, Tu Y, Ma H, Zhang J et al (2013a) The effect of genome duplication on seed germination and seedling growth of rice under salt stress. Aust J Crop Sci 12:1814–1821

    Google Scholar 

  • Jiang SY, Ma A, Ramamoorthy R, Ramachandran S (2013b) Genome-wide survey on genomic variation, expression divergence, and evolution in two contrasting rice genotypes under high salinity stress. Genome Biol Evol 5:2032–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Li J, Tang H, Paterson AH (2014) Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell 26:2792–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98:8714–8719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Islam-faridi M, Klein PE, Stelly DM, Price H et al (2005) Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171:1963–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early-season cold tolerance in sorghum. Theor Appl Genet 116:577–587

    Article  PubMed  Google Scholar 

  • Kong L, Dong J, Hart GE (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple sequence repeats (SSRs). Theor Appl Genet 101:438–448

    Article  CAS  Google Scholar 

  • Kong W, Guo H, Goff VH, Lee TH, Kim C et al (2014) Genetic analysis of vegetative branching in sorghum. Theor Appl Genet 127:2387–2403

    Article  CAS  PubMed  Google Scholar 

  • Kresovich S, Barbazuk B, Bedell JA, Borrell A, Buell CR et al (2005) Toward sequencing the sorghum genome: a US National Science Foundation-sponsored workshop report. Plant Physiol 138:1898

    Article  CAS  Google Scholar 

  • Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics Article ID 831460

    Google Scholar 

  • Kumar M, Choi J, Kumari N, Pareek A, Kim S (2015) Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica. Front Plant Sci 6:688

    PubMed  PubMed Central  Google Scholar 

  • Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiser WL, Rattunde HF, Weltzien E, Cisse N, Abdou M et al (2014) Two in one sweep: aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African sorghum. BMC Plant Biol 14:206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li M, Yuyama N, Luo L, Hirata M, Cai H (2009) In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Mol Breed 24:41–47

    Article  CAS  Google Scholar 

  • Li Q, Li Y, Song J, Xu H, Xu J et al (2014) High-accuracy de novo assembly and SNP detection of chloroplast genomes using a SMRT circular consensus sequencing strategy. New Phytol 204:1041–1049

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yu D, Zhao Q (2016) Solid-state nanopore-based DNA single molecule detection and sequencing. Microchim Acta 183:941–953

    Article  CAS  Google Scholar 

  • Lin Y, Schertz K, Paterson A (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae in reference to an interspecific sorghum population. Genetics 141:391–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK et al (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genom 22:9–26

    Google Scholar 

  • Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR et al (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ et al (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320

    PubMed  PubMed Central  Google Scholar 

  • Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M (2015) MOROKOSHI: Transcriptome database in Sorghum bicolor. Plant Cell Physiol 56:e6. doi:10.1093/pcp/pcu1187

  • Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L et al (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascher M, Jost M, Kuon JE, Himmelbach A, Aßfalg A et al (2014) Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15:R78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntyre CL, Casu RE, Drenth J, Knight D, Whan VA et al (2005) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48:391–400

    Article  CAS  PubMed  Google Scholar 

  • Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC et al (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP®, RFLP and SSR markers. Plant Mol Biol 48:483–499

    Article  CAS  PubMed  Google Scholar 

  • Messing J (2009) Synergy of two reference genomes for the grass family. Plant Physiol 149:117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller J, Jackson S, Nasuda S, Gill B, Wing R et al (1998) Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theor Appl Genet 96:832–839

    Article  CAS  Google Scholar 

  • Mohamed A, Ali R, Elhassan O, Suliman E, Mugoya C et al (2014) First products of DNA marker-assisted selection in sorghum released for cultivation by farmers in sub-saharan Africa. J Plant Sci Mol Breed 3:3

    Article  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A et al (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458

    Article  CAS  PubMed  Google Scholar 

  • Murray SC, Rooney WL, Hamblin MT, Mitchell SE (2008a) Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome 2:48–62

    Article  CAS  Google Scholar 

  • Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE et al (2008b) Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193

    Article  Google Scholar 

  • Muthukumar B, Bennetzen J (2004) Isolation and characterization of genomic and transcribed retrotransposon sequences from sorghum. Mol Genet Genomics 271:308–316

    Article  CAS  PubMed  Google Scholar 

  • Nelson JC, Wang S, Wu Y, Li X, Antony G et al (2011) Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum. BMC Genom 12:352

    Article  CAS  Google Scholar 

  • Neves LG, Davis JM, Barbazuk WB, Kirst M (2013) Whole-exome targeted sequencing of the uncharacterized pine genome. Plant J 75:146–156

    Article  CAS  PubMed  Google Scholar 

  • Nussbaumer T, Martis MM, Roessner SK, Pfeifer M, Bader KC et al (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res 41:D1144–D1151

    Article  CAS  PubMed  Google Scholar 

  • Ohyanagi H, Takano T, Terashima S, Kobayashi M, Kanno M et al (2015) Plant Omics data center: an integrated web repository for interspecies gene expression networks with NLP-based curation. Plant Cell Physiol 56:e9

    Article  PubMed  CAS  Google Scholar 

  • Olson A, Klein RR, Dugas DV, Lu Z, Regulski M et al (2013) Expanding and vetting sorghum bicolor gene annotations through transcriptome and methylome sequencing. Plant Genome. doi:10.3835/plantgenome2013.08.0025

    Google Scholar 

  • Panahi B, Abbaszadeh B, Taghizadeghan M, Ebrahimie E (2014) Genome-wide survey of alternative splicing in Sorghum Bicolor. Physiol Mol Biol Plants 20:323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasini L, Bergonti M, Fracasso A, Marocco A, Amaducci S (2014) Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of sorghum under dry-down conditions. J Plant Physiol 171:537–548

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Bowers JE, Van de Peer Y, Vandepoele K (2005a) Ancient duplication of cereal genomes. New Phytol 165:658–661

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Freeling M, Sasaki T (2005b) Grains of knowledge: genomics of model cereals. Genome Res 15:1643–1650

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Schertz KF, Cartinhour S, Hart GE (1999) Comparative genome mapping of Sorghum bicolor (L.) Moench using an RFLP map constructed in a population of recombinant inbred lines. Plant Breed 118:225–235

    Article  CAS  Google Scholar 

  • Pereira MG, Lee M, Bramel-Cox P, Woodman W, Doebley J et al (1994) Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37:236–243

    Article  CAS  PubMed  Google Scholar 

  • Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE et al (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12:795–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt LH, Liang C, Shah M, Sun F, Wang H et al (2005) Sorghum expressed sequence tags identify signature genes for drought, pathogenesis, and skotomorphogenesis from a milestone set of 16,801 unique transcripts. Plant Physiol 139:869–884

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragab RA, Dronavalli S, Maroof MAS, Yu YGL (1994) Construction of a sorghum RFLP linkage map using sorghum and maize DNA probes. Genome 37:590–594

    Article  CAS  PubMed  Google Scholar 

  • Ramalashmi K, Prathima PT, Mohanraj K, Nair NV (2014) Expression profiling of sucrose metabolizing genes in saccharum, sorghum and their hybrids. Appl Biochem Biotechnol 174:1510–1519

    Article  CAS  PubMed  Google Scholar 

  • Ramu P, Kassahun B, Senthilvel S, Ashok Kumar C, Jayashree B et al (2009) Exploiting rice-sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Theor Appl Genet 119:1193–1204

    Article  CAS  PubMed  Google Scholar 

  • Reddy RN, Madhusudhana R, Mohan SM, Chakravarthi DVN, Seetharama N (2012) Characterization, development and mapping of unigene-derived microsatellite markers in sorghum [Sorghum bicolor (L.) Moench]. Mol Breed 29:543–564

    Google Scholar 

  • Rhodes DH, Hoffmann L Jr, Rooney WL, Ramu P, Morris GP et al (2014) Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. J Agric Food Chem 62:10916–10927

    Article  CAS  PubMed  Google Scholar 

  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES et al (2008) Identification of QTL for sugar-related traits in a sweet x grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Article  Google Scholar 

  • Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12:R22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabadin PK, Malosetti M, Boer MP, Tardin FD, Santos FG et al (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor Appl Genet 124:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Salse J, Abrouk M, Murat F, Quraishi UM, Feuillet C (2009) Improved criteria and comparative genomics tool provide new insights into grass paleogenomics. Brief Bioinform 10:619–630

    Article  CAS  PubMed  Google Scholar 

  • Sampath P, Murukarthick J, Izzah NK, Lee J, Choi HI et al (2014) Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea. PLoS ONE 9:e94499

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Edwards D, Varshney RK (2014) Structural variations in plant genomes. Brief Funct Genomics 3:296–307

    Article  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Seoighe C, Gehring C (2004) Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet 20:461–464

    Article  CAS  PubMed  Google Scholar 

  • Shakoor N, Nair R, Crasta O, Morris G, Feltus A, Kresovich S (2014) A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums. BMC Plant Biol 14:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen X, Liu Z, Mocoeur A, Xia Y, Jing H (2015) PAV markers in Sorghum bicolour: genome pattern, affected genes and pathways, and genetic linkage map construction. Theor Appl Genet 128:623–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikata H, Hanada K, Ushijima T, Nakashima M, Suzuki Y et al (2014) Phytochrome controls alternative splicing to mediate light responses in Arabidopsis. Proc Natl Acad Sci USA 111:18781–18786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiringani AL, Friedt W (2011) QTL for fibre-related traits in grain x sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Theor Appl Genet 123:999–1011

    Article  PubMed  Google Scholar 

  • Siewert C, Hess WR, Duduk B, Huettel B, Reinhardt R et al (2014) Complete genome determination and analysis of Acholeplasma oculi strain 19L, highlighting the loss of basic genetic features in the Acholeplasmataceae. BMC Genom 15:931

    Article  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH et al (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Springer PS, Zimmer EA, Bennetzen JL (1989) Genomic organization of the ribosomal DNA of sorghum and its close relatives. Theor Appl Genet 77:844–850

    Article  CAS  PubMed  Google Scholar 

  • Srinivas G, Satish K, Murali Mohan S, Nagaraja Reddy R, Madhusudhana R et al (2008) Development of genic-microsatellite markers for sorghum staygreen QTL using a comparative genomic approach with rice. Theor Appl Genet 117:283–296

    Article  CAS  PubMed  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Reddy RN, Mohan SM, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454

    Google Scholar 

  • Staiger D, Brown JW (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25:3640–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subudhi PK, Nguyen HT (2000) Linkage group alignment of sorghum RFLP maps using a RIL mapping population. Genome 43:240–249

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zhou M, Mao Z, Li C (2012) Characterization and evolution of microRNA genes derived from repetitive elements and duplication events in plants. PLoS ONE 7:e34092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syed NH, Kalyna M, Marquez Y, Barta A, Brown JW (2012) Alternative splicing in plants-coming of age. Trends Plant Sci 17:616–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Bowers JE, Wang X, Paterson AH (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci USA 107:472–477

    Article  CAS  PubMed  Google Scholar 

  • Tao YZ, Jordan DR, Henzell RG, McIntyre CL (1998) Construction of a genetic map in a sorghum recombinant inbred line using probes from different sources and its comparison with other sorghum maps. Aust J Agric Res 49:729–736

    Article  CAS  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232

    Article  CAS  Google Scholar 

  • Taramino G, Tarchini R, Ferrario S, Lee M, Pe ME (1997) Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet 95:66–72

    Article  CAS  Google Scholar 

  • Tian Z, Rizzon C, Du J, Zhu L, Bennetzen JL et al (2009) Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons? Genome Res 19:2221–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1996) Identification of quantitative trait loci associated with preflowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169–179

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103:17644–17649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Shi X, Liu L, Li H, Ammiraju JS et al (2013) Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives. Genetics 195:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendorf F, Close AE, Schild R, Wasylikowa K, Housley RA et al (1992) Saharan exploitation of plants 8,000 years BP. Nature 359:721–724

    Article  Google Scholar 

  • Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821

    Article  CAS  PubMed  Google Scholar 

  • Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22:4922–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YQ, Huang Y (2007) An SSR genetic map of Sorghum bicolor (L.) Moench and its comparison to a published genetic map. Genome 50:84–89

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Gui S, Quan Z, Pan L, Wang S (2014) A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicots. BMC Plant Biol 14:289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu JH, Messing J (2006) Maize haplotype with a helitron-amplified cytidine deaminase gene copy. BMC Genet 7:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu GW, Magill CW, Schertz KF, Hart GE (1994) A RFLP linkage map of Sorghum bicolor (L.) Moench. Theor Appl Genet 89:139–145

    CAS  PubMed  Google Scholar 

  • Yan H, Jiang C, Li X, Sheng L, Dong Q et al (2014) PIGD: a database for intronless genes in the Poaceae. BMC Genom 15:832

    Article  Google Scholar 

  • Yang L, Bennetzen JL (2009) Structure-based discovery and description of plant and animal Helitrons. Proc Natl Acad Sci USA 106:12832–12837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonemaru J, Ando T, Mizubayashi T, Kasuga S, Matsumoto T et al (2009) Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.) Moench). DNA Res 16:187–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LM, Luo H, Liu ZQ, Zhao Y, Luo JC (2014a) Genome-wide patterns of large-size presence/absence variants in sorghum. J Integr Plant Biol 56:24–37

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Ciclitira P, Messing J (2014b) PacBio sequencing of gene families-A case study with wheat gluten genes. Gene 533:541–546

    Article  CAS  PubMed  Google Scholar 

  • Zheng LY, Guo XS, He B, Sun LJ, Peng Y (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou G, Zhai G, Feng Q, Yan S, Wang A et al (2012) Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot 63:5451–5462

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Chun Jing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Anami, S.E., Luo, H., Xia, Y., Jing, HC. (2016). Sorghum Genome Mapping and Its Impact Generated Through Public and Private Efforts. In: Rakshit, S., Wang, YH. (eds) The Sorghum Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-47789-3_5

Download citation

Publish with us

Policies and ethics